Magnetic fabrics in the Bjerkreim Sokndal Layered Intrusion, Rogaland, Southern Norway: Mineral Sources and Geological Significance

Andrea R. Biedermanna, Florian Heidelbachb, Mike Jacksonc, Dario Bilardelloc, Suzanne A. McEnroea

a Department of Geology and Mineral Resources Engineering, Norwegian University of Science and Technology, Sem Sælands vei 1, 7491 Trondheim, Norway
b Bayerisches Geoinstitut, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
c Institute for Rock Magnetism, University of Minnesota – Twin Cities, 100 Union St SE, MN 55455 Minneapolis, USA

The final version of this article is available at:

\url{http://www.sciencedirect.com/science/article/pii/S0040195116303808}
Abstract

Magnetic anisotropy can provide important information about mineral fabrics, and thus magmatic processes, particularly when it is known how multiple mineral species contribute to the anisotropy. It may also affect the direction of induced or remanent magnetization, with important consequences for paleomagnetic studies or the interpretation of magnetic anomalies. Here, we aim at describing the magnetic fabrics in the Bjerkreim Sokndal Layered Intrusion and identifying their carriers. Anisotropies of magnetic susceptibility and remanence were measured on samples covering different geographic locations and stratigraphic units within the Bjerkreim Sokndal Layered Intrusion. The intrusion is characterized by magmatic layering and has a synform structure, with strong foliation on the limbs. Detailed comparison between magnetic and mineral fabric shows that they are not necessarily coaxial, but the minimum susceptibility, and minimum anhysteretic remanence are generally normal to the foliation or the magmatic layering. The minimum susceptibility and anhysteretic remanence are associated with pyroxene (100) axes, and the maximum susceptibility and anhysteretic remanence are sub-parallel to the pyroxene [001] axes in layers MCU IVc and MCU IVe for which electron backscatter data are available. However, the paramagnetic anisotropy of pyroxene is too weak to explain the observed anisotropy. We propose that the magnetic anisotropy of magnetite-free specimens is carried by hemo-ilmenite exsolutions within pyroxene, in addition to pyroxene itself. When present, multi-domain magnetite dominates both the anisotropy of magnetic susceptibility and anhysteretic remanence, due to shape-preferred orientation and distribution anisotropy. The orientation of the magnetic fabric appears independent of carrier, due to their common deformation history, but the degree of anisotropy is stronger for magnetite-bearing specimens. The results of this study will facilitate future structural interpretations and may be used to correct for magnetization deflection.

Highlights

- Plagioclase & (hemo-)ilmenite in all samples, additional pyroxene & magnetite in some
- Minimum principal axes normal to foliation/pyroxene (100), maximum // pyroxene [001]
- AMS carrier: large multi-domain magnetite, hemo-ilmenite in pyroxene and pyroxene
- Magnetic fabric orientation independent of mineralogy, but higher k' if magnetite

Keywords: magnetic fabric, AMS, anisotropy of remanence, Bjerkreim Sokndal, layered intrusion, CPO
1. Introduction

Magnetic anisotropy is a powerful tool to investigate mineral fabrics in a wide range of tectonic applications (Borradaile and Henry, 1997; Borradaile and Jackson, 2010; Hrouda, 1982; Martín-Hernández et al., 2004; Stacey, 1960; Tarling and Hrouda, 1993; Uyeda et al., 1963). Balsley and Buddington (1960) found that magnetic and mineral fabrics are parallel in granitic samples whose fabrics arise from magmatic flow or deformation. More recently, magnetic anisotropy has been found to reflect the preferred mineral orientation as defined by X-ray and neutron diffraction in phyllosilicate-bearing rocks (Chadima et al., 2004; Hirt et al., 1995; Lüneburg et al., 1999; Siegesmund et al., 1995). Compared to other texture-determining techniques, electron backscatter diffraction (EBSD) has the advantage that the preferred orientation of various minerals and grain sizes can be determined in a polyphase aggregate (Prior et al., 1999). EBSD has therefore been used in recent magnetic fabric studies to determine which minerals carry the magnetic anisotropy (Bascou et al., 2002; Boiron et al., 2013). Biedermann et al. (2015) successfully modelled the paramagnetic anisotropy in mafic rocks based on EBSD data and single crystal properties.

In igneous rocks, magnetic anisotropy has been used as a proxy for lava flow dynamics, and to obtain information on emplacement processes (Archanjo et al., 1994; Archanjo and Bouchez, 1997; Brown et al., 1964; de Oliveira et al., 2010; Ellwood, 1978; Ferré et al., 2002; Halvorsen, 1974; Herrero-Bervera et al., 2001; Maes et al., 2007). However, conflicting results on whether the intermediate (Khan, 1962) or maximum (Wing-Fatt and Stacey, 1966) susceptibility axis is parallel to flow direction illustrates that it is important to understand which minerals carry the magnetic anisotropy, whether the carrier mineral(s) possess magnetocrystalline, shape or distribution anisotropy, and how minerals were aligned prior to interpreting AMS in terms of geological processes.

Mafic layered intrusions are of economic interest, as they can contain platinum group elements, chrome and nickel deposits (e.g. Charlier et al., 2015). Nevertheless, magnetic fabric studies in mafic – ultramafic intrusions are relatively rare (O'Driscoll et al., 2015). A possible reason for this is that interpreting magnetic fabrics in mafic rocks can be complicated by the presence of oriented ferromagnetic inclusions in mafic silicates (Lagroix and Borradaile, 2000). For example, Ferré et al. (2002) investigated magnetic fabrics in the mafic layered Insizwa sill, South Africa, and found that, whereas the magnetic lineation is parallel to mineral lineation, the magnetic and mineral foliations are generally perpendicular to each other. In contrast, Maes et al. (2008) observed that the magnetic fabric is parallel to magmatic layering in parts of the Insizwa sill, but does not show any systematic correlation in other parts. The mineralogy, and thus the magnetic properties, change within different units of the sill, which can also explain the seemingly inconsistent relationships.
between mineral and magnetic fabrics: magnetic anisotropy is either dominated by paramagnetic
minerals or by magnetite (Maes et al., 2008). A variation in magnetic properties with petrographic
layering has also been observed in other mafic layered intrusions (Ferré et al., 2009; Ferré et al.,
2012). Thus, magnetic fabrics in these rocks can only be interpreted reliably after their origin is
understood.

Both magnetic anomalies and paleomagnetic data can be affected by magnetic anisotropy,
either directly (Clark, 1997; Clark and Schmidt, 1994), or because magnetic anisotropy causes NRM
deflection, which has been observed in artificially deposited sediments (Anson and Kodama, 1987;
King, 1955), Welsh slates (Fuller, 1960, 1963), hemo-ilmenite ore deposits at Allard Lake, Canada,
whose AMS is dominated by hemo-ilmenite and NRM lies in or near the easy planes of hematite
(Hargraves, 1959), and other synthetic and natural rock types (Bressler and Elston, 1980; Cogné,
1987; Huang et al., 2015; Lovlie and Torsvik, 1984; Tan and Kodama, 2002; Tarduno, 1990; Tauke and
Kent, 1984). In layered intrusions of the Duluth Complex, USA, NRM deflections of ca. 8.5° have been
observed (Beck Jr. and Lindsley, 1969). Also paleointensity estimates can be affected by magnetic
anisotropy (Aitken et al., 1981; Rogers et al., 1979; Selkin et al., 2000b).

The present study will focus on the Bjerkreim Sokndal layered intrusion (BKS) in Rogaland,
Southern Norway. This intrusion is characterized by strong petrographic layering (Wilson et al.,
1996), and forms a syncline (Paludan et al., 1994). It is thus well suited to study magnetic fabrics in a
layered mafic intrusion. The only previous study on magnetic fabrics in the BKS (Bolle et al., 2000),
though extensive, focused on the uppermost part of the intrusion; ca. 80 % of their 148 sites were in
(quartz) mangerite or charnockite rocks. The possible implications that magnetic anisotropy has for
the shape and intensity of magnetic anomalies and for paleomagnetic data, as well as the fact that
magnetic anisotropy is a good proxy for mineral fabric, call for a more complete assessment of the
magnetic fabrics in the BKS intrusion, particularly because the mangerite and charnockite rocks were
formed later than the underlying cumulate series. Thus, characterizing and understanding the
magnetic anisotropy in the cumulate series is important both for structural, paleomagnetic as well as
magnetic anomaly studies.

The aim of this study is to (1) characterize the anisotropy of magnetic susceptibility (AMS)
and anisotropy of remanence in the BKS, including their variations with location and mineralogy; (2)
determine how the magnetic anisotropy relates to rock texture; and (3) identify how the various
minerals contribute to the magnetic anisotropy. The results of this work can then be applied to
future structural, paleomagnetic or magnetic anomaly studies in the BKS and similar layered
intrusions.
2. Theory

Magnetic susceptibility \((k) \) is an intrinsic property of all materials and relates the magnetization \((M) \) induced by an applied field \((H) \) to the strength of that field, \(\vec{M} = k \vec{H} \), where \(k \) is a second-order symmetric tensor. In single crystals, and consequently also in rocks with shape-preferred orientations (SPO) and/or crystallographic preferred orientations (CPO) of the minerals, magnetic susceptibility is generally anisotropic. AMS is described by the principal susceptibilities and their directions, i.e. the eigenvalues \(k_1 \geq k_2 \geq k_3 \), and eigenvectors of the tensor, which define the shape and orientation of the corresponding magnitude ellipsoid. Various parameters are used to describe the AMS degree and shape (e.g. Hrouda, 1982; Jelinek, 1981, 1984). In this study, the degree of anisotropy is described by the mean deviatoric susceptibility

\[
k' = \sqrt{\left((k_1 - k_{\text{mean}})^2 + (k_2 - k_{\text{mean}})^2 + (k_3 - k_{\text{mean}})^2 \right) / 3},
\]

where \(k_{\text{mean}} = (k_1 + k_2 + k_3) / 3 \) is the mean magnetic susceptibility, and by the anisotropy ratio \(P = k_1 / k_3 \)

and the shape of the ellipsoid is described by

\[
U = (2k_2 - k_1 - k_3) / (k_1 - k_3).
\]

Note that \(k' \) quantifies the absolute deviation of the ellipsoid from sphericity; it depends directly on concentration of magnetic phases as well as on the strength of CPO/SPO, and is thus particularly suitable for anomaly modeling, as well as for understanding superposition of anisotropies from different mineral sources. \(P \) and \(U \) are dimensionless and not directly dependent on concentration, but are nevertheless influenced by mineralogical composition.

Minerals are classified as diamagnetic (e.g. pure plagioclase), paramagnetic (e.g. orthopyroxene and clinopyroxene) or ferromagnetic (s.l.) based on their magnetic properties. Ferromagnetic (s.l.) minerals are further subdivided into ferromagnetic (s.s., e.g. metallic iron), ferrimagnetic (e.g. magnetite, low-coercivity) and antiferromagnetic (e.g. hematite, high-coercivity) species. In the remainder of this paper we will use “ferromagnetic” in the broader generic sense. All minerals in a rock, ferromagnetic, paramagnetic or diamagnetic, when aligned, contribute to the AMS, whereas only ferromagnetic grains can contribute to anisotropy of remanence. In order to gain information about the mineral fabric it is useful to separate the components due to each mineral group.

A number of separation techniques have been developed, including (1) statistical methods (Henry, 1983; Henry and Daly, 1983); (2) field- or temperature-dependence to either enhance or isolate specific components of the AMS (Ferré et al., 2004; Kelso et al., 2002; Martín-Hernández and
Ferré, 2007; Martín-Hernández and Hirt, 2001, 2004; Pares and van der Pluijm, 2002; Rochette and Fillion, 1988; Rochette et al., 1983; Schmidt et al., 2007); and (3) thermal enhancement (Borradaile and Lagroix, 2000). A different approach is to measure the anisotropy of magnetic remanence (Borradaile and Jackson, 2010; Daly and Zinsser, 1973; Jackson and Tauxe, 1991; Jackson, 1991; Potter, 2004). Unlike magnetic susceptibility which can be dominated by the paramagnetic fraction, or large ferromagnetic grains that carry relatively little remanent magnetization, magnetic remanence is effectively carried by ferromagnetic grains of a certain size range. Various types of remanence anisotropies, e.g. the anisotropy of anhysteretic remanence (AARM; McCabe et al., 1985), anisotropy of isothermal remanence (AIRM; Daly and Zinsser, 1973; Stephenson et al., 1986) or anisotropy of thermal remanent magnetization (ATRM; Cogné, 1987, 1988) can be measured to assess the components of anisotropy carried by different minerals, e.g. magnetite or hematite. A major limitation for anisotropy of remanence methods is that antiferromagnetic minerals like hematite will not reach saturation in standard laboratory fields (Kodama and Dekkers, 2004). Weak-field magnetic remanence, e.g. AARM or ATRM can be described by a second-order tensor similar to AMS (Stacey and Banerjee, 1974). Strong-field magnetic remanence, i.e. AIRM imparted in high fields, however, is a nonlinear function of the applied field. Anisotropy of remanence is measured by either determining the intensity of the remanence parallel to the applied field in a set of orientations (Cox and Doell, 1967; McCabe et al., 1985) or by measuring the diagonal and off-diagonal elements of the tensor (parallel and transverse components of remanence) directly (Stephenson et al., 1986).

The rocks in this study contain two ferromagnetic minerals, magnetite and hemo-ilmenite, in addition to paramagnetic (pyroxenes) and diamagnetic (plagioclase) minerals. The magnetization behavior of these minerals is very different: magnetite has a lower coercivity and reaches saturation in low applied fields (a few hundred mT), whereas hemo-ilmenite has a higher coercivity, which depends on whether hematite or ilmenite act as host, and on how many generations of lamellae have developed during cooling (Robinson et al., 2004). The contribution of magnetite will be assessed by AARM measurements, and that of hemo-ilmenite by partially demagnetized AIRM.

3. Geological Setting

The Bjerkreim Sokndal intrusion (BKS) is a 230 km² layered igneous intrusion, which was emplaced ca. 930 Ma ago. It consists of three lobes, and the present study will focus on the Bjerkreim lobe which contains a cumulate series with 6 megacyclic units (MCU0, MCUIa, MCUIb, MCUII, MCUIII, and MCUIV), overlain by acidic rocks (i.e. mangerite and quartz mangerite). Each MCU represents an individual magma influx followed by fractional crystallization, and is subdivided into several layers a-f, based on mineralogy (Wilson et al., 1996). The petrography and geochemistry of the BKS is well...
documented (Charlier et al., 2005; Duchesne, 2001; Duchesne and Charlier, 2005; McEnroe et al., 2000; Michot, 1960b, 1965; Robinson et al., 2001; Wilson et al., 1996), and an overview of the mineralogy for each layer is given in Figure 1. In addition to the classification based on cumulate minerals, McEnroe et al. (2009a) defined a specific layer within MCU IVe, MCU IVe’, based on magnetic properties.

![Figure 1: (a) Simplified map of the Bjerkreim lobe of the BKS with site locations, redrawn after McEnroe et al. (2009): coordinate system UTM32N in this and subsequent figures. Dashed line indicates fold axis of the syncline, redrawn from Poludan et al. (1994). Small letters next to the fold axis indicate the layers at the bottom and top of each MCU. Inset map shows the relationship of the Bjerkreim lobe (dark grey) to the other parts of the BKS (light grey), redrawn after Wilson et al. (1996), and the study location in southern Norway. (b) Simplified layer stratigraphy and mineralogy, after Wilson et al. (1996).]

The major structure observed in the Bjerkreim lobe of the BKS is an isoclinal syncline, whose fold axis trends ca. 125° and plunges ca. 35° to the SE. Tectonic linear and planar fabrics overprint the igneous layering, and are defined by shape-preferred orientation of pyroxene and plagioclase, and of elongate aggregates of mafic minerals. Tectonic and igneous foliations are parallel in each limb of the syncline, but differ in the hinge zone, where the tectonic foliation parallels the axial plane of the fold. The fabric in the hinge zone has been described as dominantly linear. The lineation is weak in the structurally lower parts of the hinge zone, and becomes more intense in the higher parts of the cumulate series. A strong sub-vertical foliation has been described in both limbs of the fold,
which is locally overturned at the north-eastern contact (Michot, 1960a; Paludan et al., 1994; Wilson et al., 1996). The depth to the floor of the intrusion and syncline has been estimated to 4 km – 9 km based on gravity modelling, structural considerations, and a seismic profile (Deemer and Hurich, 1997; Paludan et al., 1994; Smithson and Ramberg, 1979).

Paludan et al. (1994) suggested that the formation of the syncline is related to gravitational instability, possibly accompanied by regional-scale folding, and also by shear along the limbs of the structure, an observation supported by new anisotropy data presented in this study. Bolle et al. (2000; 2002), instead relate the deformation exclusively to gravitational instability, either resulting from passive subsidence of the dense intrusive rocks, or diapiric emplacement of neighboring anorthosites. The same authors postulate a syn- to post-magmatic deformation temperature of 900°C. Lineations and foliations within the syncline indicate a convergent flow pattern that is interpreted to result from a single event of solid-state deformation (Paludan et al., 1994; Bolle et al., 2000).

Lineations and foliations within the syncline show a convergent flow pattern, interpreted to result from a single event of solid state deformation. This deformation was caused by gravitational instability, leading to passive subsidence of the dense intrusive rocks, or diapiric emplacement of neighboring anorthosites (Bolle et al., 2000; Bolle et al., 2002; Paludan et al., 1994). Paludan et al. (1994) report a contemporaneous shear deformation along the limbs of the syncline in addition to the subsidence, and state that regional-scale folding may have contributed to the formation of the syncline.

The BKS attracted interest in the magnetic community as it generates a series of positive and negative magnetic anomalies (McEnroe et al., 1996; McEnroe et al., 2001; Rønning, 1995). The anomalies are related to varying amounts of the Fe-Ti oxides (hemo-ilmenite and magnetite, whose relative abundance and composition change for different layers; hemo-ilmenite dominates in the primitive parts of the intrusion, whereas magnetite with various exsolution features becomes increasingly important in the more evolved parts (Brown and McEnroe, 2015; Duchesne, 1972; McEnroe et al., 2004a; McEnroe et al., 2001). Large changes in magnetic properties are observed across contacts, when the dominant magnetic mineral changes from hemo-ilmenite to magnetite or vice versa (McEnroe et al., 2009a). Both magnetite and hemo-ilmenite occur as large discrete grains, up to 0.5 – 1mm size, or as exsolutions in pyroxenes. Magnetic force microscopy shows that large magnetite grains are multi-domain (MD), and magnetite exsolutions in clinopyroxenes are pseudo-single-domain (PSD) and MD grains, up to 30 µm long and a few µm wide (Frandsen et al., 2004). Magnetite contents have been estimated to 0.4 – 5.2 % throughout the intrusion (McEnroe et al.,
and 0.2 – 6.1 % for samples of the MCU IV unit close to Heskestad (McEnroe et al., 2004a), based on measurements of magnetic susceptibility. Magnetic susceptibility values reported by Brown and McEnroe (2015) translate to 0.04 – 4.6 % magnetite for the cumulate series of the BKS. Korneliussen et al. (2000) reports up to 20 % ilmenite and up to 20 % V-bearing Ti-magnetite in parts of the intrusion.

Parts of MCU I Ve' are associated with a strong negative anomaly of -13,000 nT at a height of 45 m above ground (McEnroe et al., 2004a; McEnroe et al., 2004b). This anomaly is caused by a stable and strong natural remanent magnetization (NRM) with an orientation roughly opposite to that of today’s geomagnetic field, carried by lamellar magnetism of hemo-ilmenite (McEnroe et al., 2009a; McEnroe et al., 2001; Robinson et al., 2002, 2004). The NRM due to lamellar magnetism is characterized by (1) moderate to strong intensity, (2) large coercivity particularly for hematite-hosted lamellae, and (3) high thermal stability, and the rocks still carry the signature they acquired in the Proterozoic (Brown and McEnroe, 2015). The intensity of the lamellar magnetism NRM depends on the volume-concentration of the lamellae (McCammon et al., 2009; McEnroe et al., 2009a), and on the orientation of the lamellae with respect to the magnetizing field (Robinson et al., 2013).

4. Methods

4.1 Sample description

Oriented specimens were collected during fieldwork or available from previous studies (e.g. Brown and McEnroe, 2015), and were selected so as to cover different units of the intrusion and various locations with respect to the fold (Table 1, cf. Figure 1). The new sample collection includes 258 specimens, with 95 drill cores from 29 sites, and 3 oriented blocks. From the existing collection, 104 specimens from 54 cores drilled at 20 sites and 9 oriented blocks were used. A special focus was put on the MCU I Ve’ layer, which generates the most prominent negative anomaly in the area.

Because this anomaly disturbs the total magnetic field, compass readings for each drill core or block were double-checked by measuring the direction to the sun, or the known direction to another far-away point, when weather conditions did not allow sun corrections. Based on this, 61 orientations were corrected.

Initial sample characterization included determining density and mineralogy. Density was measured on a Mettler Toledo New Classic scale using Archimedes’ principle. Polished 30 µm thin sections were analyzed with both transmitted and reflected light microscopy, on an Olympus BX51 microscope. Pictures were taken with a ProgRes SpeedXTcore5 camera. Image analysis on scans of entire thin sections was used to estimate the percentage of opaque grains, i.e. magnetite, hemo-
ilmenite and sulphides, using ImageJ. Image analysis was performed on 28 thin sections from 28 sites, mainly from the MCU IVe and MCU IVc units.

4.2 Mineral fabrics
CPOs of silicate and oxide minerals were measured with electron backscatter diffraction (EBSD) in a scanning electron microscope (SEM) at the Bayerisches Geoinstitut, University Bayreuth. The SEM was a Zeiss Gemini 1530 equipped with a Schottky emitter and an EBSD detection system from Oxford Instruments. Beam conditions were set to 25 keV accelerating voltage and a beam current of about 2.3 nA resulting in a measuring time of 0.18 seconds per data point. Highly polished sections of the cylinders previously used for the magnetic measurements were analyzed by measuring large areas (roughly 1 cm²) with a step size of 20 microns. In addition, smaller areas were measured with a step size of 0.55 to 0.8 microns on one specimen to investigate iron oxide exsolutions within pyroxene, and the orientation relationships of the exsolutions and the pyroxene. Phases chosen to index were magnetite, hemo-ilmenite, orthopyroxene (enstatite), clinopyroxene (diopside) and plagioclase (andesine) covering the major phases of the rocks. Concurrent chemical mapping with EDS was used to corroborate the correct indexing of the different phases and in addition revealed that in some specimens there were also significant amounts of apatite present. Analysis of CPO was partly hindered by the relative large grain size, especially for plagioclase, such that strong peaks from single grains dominate the pole figure (see below). For the main phases of interest (orthopyroxene, clinopyroxene, hemo-ilmenite and magnetite) the statistics of measurements were generally sufficient for a representative CPO. Data was processed in MTex 3.5 (Hielscher and Schaeben, 2008).

4.3 Magnetic analyses
4.3.1 Rock magnetic properties
A series of rock magnetic experiments was conducted on one or two specimens of selected sites (total 33 sites) to characterize the magnetic mineralogy: room-temperature hysteresis loops (12 specimens), alternating field (AF) demagnetization (37 specimens), acquisition of isothermal remanent magnetization (IRM; 2 specimens), high-temperature magnetic susceptibility (13 specimens) and low-temperature magnetic properties (6 specimens). Hysteresis loops were measured on a Princeton Measurements vibrating sample magnetometer (VSM) in fields up to 1.4 T. AF demagnetization was conducted on an Agico (Brno, Czech Republic) LDA5 demagnetizer or a DTech D-2000 Precision Instruments AF demagnetizer, and the remaining remanence was measured with an Agico JR6 spinner magnetometer or a 2G Enterprises (Mtn. View, CA, USA) RF SQUID superconducting rock magnetometer (SRM). Acquisition of IRM was determined using an ASC-Scientific (Carlsbad, CA, USA) IM-10-30 pulse magnetizer with a custom coil able to reach fields of 9 T, and a 2G SRM. High-temperature magnetic susceptibility curves were measured on an Agico MFK1-A
magnetic susceptibility bridge in a field of 200 A/m, frequency of 976 Hz, and up to 700° C. Low-
temperature magnetic properties were measured with a QuantumDesign (San Diego, CA, USA) magnetic property measurement system (MPMS). Strong-field magnetization was measured whilst cooling in a 2.5 T field, after which the field was turned off and the field-cooled (FC) remanence was measured during warming in zero field. Samples were then cooled in zero field (ZFC) and given a magnetization in 2.5 T isothermally at 20 K (LTSIRM), and the ZFC remanence curve was measured during warming in zero field. For low-temperature cycling of a room temperature IRM, remanence was measured from room temperature to 20 K and back to room temperature in zero field.

4.3.2 Susceptibility and AMS

Low-field magnetic susceptibility and its anisotropy were measured for all 361 specimens on an Agico MF1-A magnetic susceptibility bridge, on standard-sized cores in a field of 200 A/m and a frequency of 976 Hz. Low-field AMS was determined either by measuring directional magnetic susceptibility in 15 orientations, or by rotating in 3 orthogonal planes (Jelinek, 1977, 1996). The results obtained with these two methods are indistinguishable for the 20 specimens on which both have been measured. To test whether the NRM has an effect on the low-field AMS, the AMS principal directions and anisotropy parameters of the same sample before and after AF demagnetization to 100 mT and 200 mT were compared for 8 samples, and were found to be the same within the error of the measurement. All low-field magnetic susceptibility data was corrected for effect of self-demagnetization, which becomes important in specimens with magnetic susceptibility larger than ~0.1 (SI; e.g. Clark, 2014). High field AMS was determined by measuring hysteresis loops in 36 different orientations in three orthogonal planes (Ferré et al., 2004; Kelso et al., 2002). Cubes with 1 cm or 5 mm side length were used in order to minimize artefacts due to shape, and two cubes were measured for each specimen to assess reproducibility.

4.3.3 Anisotropy of remanence

A total of 97 remanence anisotropy experiments were conducted, with the aim to characterize the anisotropy of different ferromagnetic minerals. Anisotropy of anhysteretic remanence (AARM, 57 specimens) and partial anhysteretic remanence (ApARM, 10 specimens) were measured by applying a DC bias field during AF decay. DC bias fields of 0.1 mT were applied over the AF ranges of 100 mT – 0 mT, and 190 mT – 120 mT for AARM and ApARM, respectively. A 9-position measurement scheme was used initially, and later replaced by a 3-position measurement scheme, because the full-vector calculation based on 3 positions yielded results that were indistinguishable from those of the parallel-component calculation using 9 measurements.

Anisotropy of partially demagnetized IRM (ApIRM, 22 specimens) was determined by magnetizing the specimens in 9 directions using a 2G pulse magnetizer in a field of 1 T and then
removing the low-coercivity component by AF demagnetization at 150 mT. Each directional
magnetization was measured on a 2G SRM. Because the specimens are so strongly magnetic, we did
not attempt to measure the full AIRM, which was expected to be higher than the upper
measurement limit of the 2G.

Anisotropy of thermal remanence (ATRM) and partially demagnetized thermal remanence
(ApTRM) was measured on a set of 8 specimens. They were heated to 625°C, i.e. above the ordering
temperature of hemo-ilmenite (up to ~600 °C, depending on composition) as shown by McEnroe et
al. (2002) and McEnroe et al. (2009a), and subjected to a 50 µT field during cooling. Full TRM and
‘hard TRM’ (thermal remanence demagnetized in an AF field of 150 mT) were imprinted along three
perpendicular directions and measured on a 2G SRM. Data was processed with the software package
available at the Institute for Rock Magnetism, University of Minnesota.

5. Results

5.1 Optical microscopy

The rocks consist of various amounts of plagioclase, orthopyroxene, clinopyroxene, hemo-ilmenite, magnetite, sulfides and apatite (Figure 2). In particular the pyroxenes are strongly
deformed, but also the exsolution lamellae in plagioclase indicate deformation. Orthopyroxene and
clinopyroxene contain exsolutions of hemo-ilmenite with two distinct orientations, but elongated
primarily along the pyroxenes’ [001] axes. Clinopyroxene contains additional exsolutions of
magnetite. The amount of opaque grains, including magnetite, hemo-ilmenite and sulphides, as
determined by image analysis varies from 2 to around 20 %, and are commonly around 10 % (cf.
Table A). Note that specimens with high magnetic susceptibility and NRM were chosen to produce
thin sections. Because image analysis was performed on one cross-section, whereas opaque grains
are heterogeneously distributed in the sample, these values should be taken as an approximate
estimate rather than the true amount of opaques in the specimen.
Figure 2: Characteristic thin sections of sites BK2015_16, BK2015_9, BK2015_18 (from top), in cross-polarized light, showing the deformation in orthopyroxene as well as exsolutions within pyroxenes, and SEM image showing exsolutions in a clinopyroxene (bottom). Opx – orthopyroxene, Cpx – clinopyroxene, Plg – plagioclase, Ap – apatite, Hem-ilm – hemo-ilmenite, Mag - magnetite. Opaque grains are either magnetite or hemo-ilmenite.
5.2 Mineral fabrics

The rock texture is characterized by layering of mafic and felsic minerals, as well as CPO of the different mineral phases. EBSD of 8 specimens from the MCU IVc and MCU IVe' layers shows strong preferential alignment of orthopyroxene and clinopyroxene, whose (100) axes are approximately normal to the layering, which is sub-vertical in the east of the Bjerkreim lobe (Paludan et al., 1994; Figure 3). Orthopyroxene fabrics are stronger and better defined than clinopyroxene fabrics. The presence of several high maxima in the pyroxene orientation density function in some specimens indicates that only a small number of grains had been measured. The plagioclase fabric is weaker than the pyroxene fabric, except for two specimens, for which only a small number of large grains had been measured. The ferromagnetic minerals magnetite and hemo-ilmenite show rather uniform orientation density functions, except in site BK2015_26, where the hemo-ilmenite (0001) plane is parallel to foliation (Figure A, Supplementary Material).
Detailed investigation of the exsolutions within pyroxenes of specimen BK2015_4_1b, as determined by EBSD, shows that orthopyroxene contains hemo-ilmenite lamellae, mainly with hemo-ilmenite (0001) axes parallel to the orthopyroxene (100) axes (i.e. (0001)/(100)) and a minor fraction having (11-20)/(010). Clinopyroxenes contain enstatite and hemo-ilmenite (100)/(0001) and magnetite exsolutions extended in the (010) plane of diopside/(110) of magnetite. The orientation relationships are: Cpx(100) // Opx(100) // Hem-Ilm(0001) // Mag(111), and Cpx(010) // Opx(010) // Hem-Ilm(10-10) // Mag(110), and Cpx[001] // Opx(001) // Hem-Ilm(11-20).

5.3 Rock magnetism and magnetic anisotropy

5.3.1 Rock magnetic properties

Mean magnetic susceptibilities vary over several orders of magnitude, from 5*10^-4 (SI) to 0.23 (SI). Hysteresis loops of the new samples are similar to what has been described previously (McEnroe et al., 2009a). AF demagnetization reveals three distinct groups of specimens (Figure 4): (1) Most specimens (n = 33) show a large decrease of magnetization in alternating fields up to 20 mT, generally followed by a slower decay. In particular, specimens with strong initial magnetization (20-40 A/m) lose 90 % of their remanence below 60 mT. A magnetization of up to 1 A/m remains after the maximum AF demagnetization step of 200 mT. This behavior is typical for specimens from layers d, e, and f, which contain magnetite in addition to (hemo-)ilmenite. Remanence decay in low field is however also observed in some specimens from layers a and c, e.g. BK106. (2) The second group of specimens (n = 10) reacts little to AF demagnetization below 50 mT, followed by a drop in magnetization between 50 and 120 mT, and ca. 5 % of the magnetization remains after the maximum demagnetization step. These specimens belong to the c layers of different MCUs; and (3) specimens from sites BK31, BK110 and BK111 (a layers) do not demagnetize below ca. 100 mT, and up to 70% of the magnetization remains at 200 mT. This behavior is similar to that reported by Brown and McEnroe (2015).

Additional experiments were performed to further investigate Group (1), particularly to identify the high-coercivity component, which remains after AF demagnetization to 200 mT. In IRM acquisition experiments, the remanence appears to saturate at ca. 300 mT and remains stable up to 9 T (Figure 5). Magnetic susceptibility vs high-temperature curves show a number of different behaviors, but all have (dis)ordering (Curie) temperatures of 579 °C ± 4 °C during heating, and 581 ± 3 °C upon cooling. The behavior at lower temperatures is not always reversible (Figure 6).
Figure 4: Characteristic AF demagnetization patterns.

Figure 5: IRM acquisition of specimen BK2015_5_2b. Inset shows the IRM acquisition at low fields.
Measurement of synthetic magnetite and hematite standards in an Argon atmosphere consistently resulted in Curie and Néel temperatures of 590 °C and ~700 °C, respectively (N.S. Church, pers. comm.), indicating that the temperature calibration is ~10 °C too high when compared to the known stoichiometric magnetite Curie temperature of 580 °C and a stoichiometric hematite Néel temperature of 685 °C. Whereas more work is needed to adjust the temperature calibration for rock magnetic studies, for the purpose of this investigation, it can be assumed that the true Curie temperatures are likely 10 °C lower than measured, i.e. around 570 °C. The observed Curie temperatures are indicative of magnetite with very minor Ti-substitution. Hematite with about 12% Ti substitution would have a similar Néel temperature (e.g. Hunt et al., 1995), however, its contribution to magnetic susceptibility is negligible compared to that of magnetite.
At low temperature, a Néel transition can be observed at ~55 K (Figure 7) in the strong-field magnetization curve. It is seen in all specimens measured, but most prominently in BK2015_17 and BK2015_26. The ZFC and FC remanence curves show two transitions (defined by their steepest slopes) at 28 K and between 97 and 103 K. Three transitions are generally observed during low-temperature cycling of a room temperature remanence: a minor change at 50±3 K, and much larger ones at 95±3 K and 123±3 K (Figure 7). Specimen BK2015_17_1b appears to have an additional transition at ca. 104 K. The transitions at 95 K and 123 K are interpreted as Verwey transitions due to magnetite (Muxworthy and McClelland, 2000; Verwey, 1939). A Verwey transition temperature around 123 K indicates pure stoichiometric magnetite. The transition temperature can be lowered due to e.g. maghemitization (i.e. oxidation) or substitution (Dunlop and Özdemir, 1997). The lowest transition, near 50 K, may be associated with the ilmenite host of the hemo-ilmenite (Ishikawa and Akimoto, 1958; Ishikawa, 1962; Stickler et al., 1967), or with MD magnetite (Hirt et al., 2006; Moskowitz et al., 1998; Muxworthy, 1999). The Néel temperature of ilmenite in hemo-ilmenite has been observed between 57 K and 60 K (Ishikawa, 1962; McEnroe et al., 2009b; McEnroe et al., 2002), so the transition observed in the strong-field magnetization curve at 55 K is almost certainly due to ilmenite.

![Figure 7: Transitions observed from MPMS data: strong-field magnetization (a), FC remanence and ZFC remanence, and RT remanence during cooling and warming (b). Note different scales for FC/ZFC remanence (left) and RT remanence (right). Derivatives with respect to temperature are shown in (c), (d).](image-url)
5.3.2 AMS

Low-field magnetic anisotropy is strongly significant in all 361 specimens (F-value over 100; 3.48 significance threshold; Table A, Supplementary Material). The anisotropy degree P ranges from 1.06 to 3.59, with the largest P-values in the magnetite-rich sites BK44, BK47 (d-layer), and some high P-values in the IVe’ layer (BK2015_2, BK2015_17, BK2015_14). The mean deviatoric susceptibility, k', varies between 3.4×10^{-5} (SI) and 0.10 (SI), or between 2.3% and 50.2% of the mean magnetic susceptibility. The highest values for k' are observed in the same sites that display large P-values. Anisotropy parameters of specimens with high mean susceptibility have to be taken with caution due to the large effect of self-demagnetization. The shape of the AMS ellipsoid varies between highly prolate ($U = -0.92$) to highly oblate ($U = 0.84$), but most specimens, especially those with high mean magnetic susceptibilities, have prolate AMS ellipsoids.

The directions of the principal magnetic susceptibility axes are generally well grouped for specimens of the same site and sites located closely (Figure 8), particularly in the eastern part of the layered intrusion. More spread within sites and between adjacent sites is observed in the hinge zone, where anisotropy is weaker, and towards the west of the intrusion. Principal magnetic susceptibility directions vary with geographic location, but seem independent of stratigraphic height, and mineralogy.

High-field anisotropy measured on the VSM yielded inconsistent results for different specimens from the same site. This suggests that the small cubes measured are not representative of the rocks. Larger cubes could not be used as the samples were strongly magnetic.

5.3.3 Anisotropy of remanence

Anisotropy of anhysteretic remanence describes the isolated anisotropy due to remanence-carrying magnetite with coercivity up to 100 mT. AARM was measured on 57 specimens and is significant for all but nine of these (Table B, Supplementary Material). Particularly, AARM is significant in 41 out of 43 measured specimens showing a remanence decay in low AF fields (Group (1)). This includes specimens from layers d-f, but also some from layers a or c that contain only small amounts of magnetite. Seven out of 11 specimens from Group (2) have a significant AARM. It is not significant for specimens of Group (3). Mean anhysteretic remanence varies from 1.3×10^{-6} to 7.3×10^{-5} Am2/kg (3.6×10^{-3} to 0.24 A/m). The degree of anisotropy ranges from $P = 1.15$ to 3.62, or $k' = 9.7 \times 10^{-8}$ Am2/kg to 2.9 $\times 10^{-5}$ Am2/kg (2.7 $\times 10^{-4}$ to 2.9 $\times 10^{-2}$ A/m), corresponding to 5.8 to 53.7 % of the mean anhysteretic remanence. The shape of the AARM ellipsoid is dominantly prolate, with only three specimens displaying an oblate shape; U varies between -0.91 and 0.30. The AARM has a similar orientation as the low-field AMS in the majority of specimens. An exception is BK45, in which the minimum AARM is parallel to the maximum susceptibility. ApARM is not significant in any of the
specimens on which it was measured. Thus, no anisotropy is carried by grains with coercivities
between 120 mT and 190 mT.

The ApIRM describes the anisotropy of the remanence-carrying minerals in the 150-1000 mT
coefficency range. It was measured on 22 specimens and is significant in 12 of these, however, not as
well defined as the AMS or AARM, as the confidence ellipses are larger. ApIRM is significant in 8 of 15
measurements for Group (1), 4 of 5 measurements for Group (2). In Group (3), 2 specimens had been
measured, and none displays a significant ApIRM. The mean partial IRM ranges from 1.1*10^-9 Am^2/kg
to 1.1*10^-8 Am^2/kg (3.6*10^-6 A/m – 3.5*10^-5 A/m), and is orders of magnitude weaker than the mean
anhysteretic remanence, thus explaining the lower confidence. The ratio between maximum and
minimum partial IRM is around 1.1 – 1.2 in the majority of specimens, but in specimen BK2015_2_1c, it is as high as 4.7. The minimum and maximum partial IRMs appear switched with respect to the
minimum and maximum principal susceptibilities or AARMs in most specimens of Group (1)
(BK2015_2, _5, _14, _18, _20), but can be coaxial in others (BK2015_4, _17). In Group (2), ApIRM can
be, but is not necessarily coaxial to the AMS and AARM. In site BK45, the ApIRM principal axes are
close to those of the AARM, with the minimum pIRM sub-parallel to the maximum susceptibility. This
may indicate an inverted AMS fabric.

The ATRM should be dominated by magnetite, and is significant in all but two of eight
measured specimens. The anisotropy left after partial AF demagnetization should be carried by
hemo-ilmenite, and is significant in three specimens. The mean TRM varies from 1.2*10^-4 Am^2/kg to
2.7*10^-4 Am^2/kg (1.5*10^-2 A/m – 2.2*10^-2 A/m) and the mean pTRM from 4.7*10^-6 Am^2/kg to 7.2*10^-6
Am^2/kg (3.9*10^-1 A/m – 8.4*10^-1 A/m). The degree of anisotropy is stronger for the ATRM (P = 2.31 –
3.26; k’ = 3.9*10^-5 Am^2/kg – 1.2*10^4 Am^2/kg or 31.6 – 49.6 % of the mean TRM) than the ApTRM (P =
1.47 – 1.94; k’ = 1.2*10^-6 Am^2/kg – 1.4*10^6 Am^2/kg or 16.1 to 28.8 % of the mean pTRM). As both
AARM and ATRM characterize anisotropy of magnetite, it is expected that they are coaxial. This is the
case for some sites, but the intermediate and maximum axes are switched in other sites, even
though the remanence ellipsoids do not have oblate shapes. Similarly, if ApIRM reflects hemo-
ilmenite anisotropy as does the ApTRM, their principal axes should be parallel, which is not observed
in the two specimens where both anisotropies are significant. It remains an open question whether
laboratory remanence (ApTRM or ApIRM) adequately reflects the remanence carried by lamellar
magnetism, as the latter is a chemical remanence, formed during exsolution of the lamellae
(Robinson et al., 2004), and not a TRM. Additionally, thermal remanence results have to be
interpreted with caution as alteration during heating cannot be excluded. They will thus not be
discussed further.
Figure 8: Lower hemisphere equal-area stereoplots showing the directions of principal AMS and anisotropy of remanence axes. Of Figure B, Supplementary Material, for a complete map with separate stereoplots for each site.
6. Discussion

The main goal of the following discussion is to determine which mineral(s) contribute to or dominate the magnetic fabrics in each layer of the BKS intrusion. To achieve this, we will first discuss the magnetic mineralogy, i.e. determine which ferromagnetic minerals have been identified in microscopy and rock magnetic analyses. This will be followed by a comparison of macroscopic fabric, CPO, SPO and magnetic fabric orientation, before it will be possible eventually to identify the carriers of the magnetic fabric.

6.1 Magnetic mineralogy

Two types of oxides, magnetite and hemo-ilmenite, have been observed in different amounts in thin sections and from rock magnetic analyses, in accordance with results from previous studies on the BKS (Brown and McEnroe, 2015; Duchesne, 1972; McEnroe et al., 1996; McEnroe et al., 2004a; McEnroe et al., 2001). Low- and high-temperature magnetic properties, as well as AF demagnetization curves confirm the presence of two oxides, magnetite and hemo-ilmenite, and the two Verwey transitions are attributed to two types of magnetite. Magnetite dominates the bulk magnetic properties in layers d, e, and f. According to the mineralogical classification, layers a and c contain only hemo-ilmenite as oxide mineral, however, rock magnetic experiments reveal that small amounts of magnetite are present in some sites, as has also been described by McEnroe et al. (2009a). Mean magnetic susceptibility increases with density, following one of two distinct trends (Figure 9a), reflecting magnetic properties dominated by magnetite or hemo-ilmenite, respectively. Additional variation is associated with the amount of pyroxene present in each specimen. Also AMS parameters vary depending on which oxide dominates; both P and k’ are higher for magnetite-bearing samples, and lower if hemo-ilmenite is the only oxide present. The AMS shape U is more prolate in samples dominated by magnetite (Figure 9b-f).

When present, magnetite with its strong magnetization completely dominates the bulk magnetic susceptibility. Therefore, the magnetite concentration can be estimated from the mean magnetic susceptibility or anhysteretic remanence. Clark (1997) provides the following formula to estimate the volume fraction of magnetite:

\[x \text{ (vol.\%)} = \frac{k_{\text{mean}}}{0.0347}, \]
Figure 9: (a) Mean magnetic susceptibility as a function of density. (b-f) Correlations between mean susceptibility and various anisotropy parameters. Black symbols indicate specimens from a or c layers, i.e. containing mainly hemo-ilmenite as ferromagnetic mineral, and grey symbols refer to specimens from the b, d-f layers and mangerite, whose magnetic susceptibility is dominated by maghemite.
for magnetite fractions of a few percent, based on average empirical relationships (Puranen, 1989).

According to this linear relationship, the specimens presented here contain between 0.02 % and 6.5 % magnetite. Slightly higher values are obtained when using Thompson and Oldfield (1986)’s typical magnetic susceptibility values for MD (2.8 SI) and single-domain (SD; 2.4 SI) magnetite; 0.02 % - 8.1 %, and 0.02 % - 9.4 %, respectively. However, significant deviations from this linear relationship were observed for > 10 vol.% magnetite, and the intrinsic magnetic susceptibility of pure magnetite ore can vary between 13 SI for fine-grained magnetite, and up to 130 SI for very coarse, well-crystallized magnetite (Clark, 1997). Thus, values higher than a few % have to be interpreted with caution. Earlier studies report susceptibilities between 0.07 to 0.12 (McEnroe et al., 1996) or 7*10^{-3} to 0.17 (McEnroe et al., 2004a) in the Heskestad area, which corresponds to a maximum of 6.1 % magnetite; up to 1 SI; McEnroe et al., 2001) in ore bodies associated with the intrusion and between 1*10^{-4} and 0.2 (SI) throughout the intrusion (McEnroe et al., 2009a), which leads to similar estimates. Brown and McEnroe (2015) show susceptibilities between 2.0*10^{-3} and 7.6*10^{-2} in the a layers, 1.6*10^{-3} to 2.5*10^{-2} in the b layers, 1.4*10^{-3} – 1.6 *10^{-2} in c layers, 2.5*10^{-2} to 0.16 in layer d, 1.7*10^{-2} to 8.3*10^{-2} in e (including e’), and 7.4*10^{-2} to 0.12 in layer f. This corresponds to 0.06 – 2 %, 0.04 – 0.7 %, 0.04 – 0.5 %, 0.7 – 4.6 % 0.5 – 3.8 % and 2.1 – 3.4 % magnetite in layers a, b, c, d, e and f, respectively.

More definitive concentration calculations based on saturation magnetization (M_s), which is independent of domain state, yield estimates consistent with the range of magnetic susceptibility-based estimates, for the sites where hysteresis data is available: M_s ranges from 0.5 to 5 Am2/kg, corresponding to 0.6% to 6% magnetite by mass. However, variation is observed between different subsamples of the same specimen. Image analysis indicates typically around 10 % opaque grains, which can be taken as an upper limit of the amount of magnetite. This is consistent with estimates based on magnetic properties, and lies within the range given by Korneliussen et al. (2000).

The remanence-carrying magnetite fraction can be estimated by using representative values for ARM susceptibility of 100 µm3/kg (MD magnetite) and 800 µm3/kg (SD magnetite), respectively (Thompson and Oldfield, 1986). This yields a maximum of 1 wt.% magnetite, which is much lower than the magnetite fraction calculated from magnetic susceptibility or saturation magnetization. This can be explained by (1) the magnetite grains in the BKS samples are less efficient in acquiring remanence than the reference material used by Thompson and Oldfield (1986), or (2) only a small part of the magnetite present in the samples carries remanence, while the majority of magnetite is MD and contributes only to magnetic susceptibility. The latter is in agreement with Frandsen et al. (2004), who describe two magnetite fractions; large MD grains on a 100 µm scale, and elongated PSD grains on the order of 30 µm long and < 5 µm wide. Thus, three magnetic carriers can be identified: MD magnetite, PSD magnetite and hemo-ilmenite.
6.2 Macroscopic fabric, CPO and magnetic anisotropy

The macroscopic foliation and lineation are defined by (1) igneous layering, i.e. mafic and felsic layers, (2) SPO of aggregates of mafic minerals, and (3) preferred alignment of individual mineral phases (Bolle et al., 2000; Paludan et al., 1994). Felsic and mafic layers are observed on an outcrop and sample scale. Image analysis shows that opaque grains, and thus magnetite, display SPO and are concentrated in specific planes (Figure 10). The EBSD data presented here show CPOs in agreement with the macroscopic fabric. The CPOs are strongest for orthopyroxene, with (100) planes parallel to foliation. Clinopyroxene fabrics are weaker, but the grouping of (100) has a similar orientation to the orthopyroxene (100). Plagioclase shows a weak CPO, generally with (010) parallel to foliation. Similar preferred orientations of plagioclase with respect to macroscopic fabric have been reported in the Bushveld layered intrusion (Feinberg et al., 2006), the Stillwater Complex (Selkin et al., 2000a), and the Oklahoma anorthosite (Seront et al., 1993).

Figure 10: Comparison of AMS and shape and distribution of opaque grains for three representative specimens (left and middle). The minimum susceptibility is normal to bands of opaque grains and their preferred elongation; the maximum susceptibility is parallel to the bands and preferred elongation. Area % opaques as determined from image analysis; vol.% magnetite from mean magnetic susceptibility and Clark’s (1997) formula. Diameter of thin sections 2.5 cm. (right) Thin section photographs to show mineralogy of the corresponding samples, cross-polarized light.
A comparison between AMS, AARM and CPO shows a striking similarity in the direction of the minimum susceptibility, minimum anhysteretic remanence and the grouping of orthopyroxene (100) axes. The minimum susceptibility is also associated with plagioclase (010) and clinopyroxene (100).

Maximum susceptibility and remanence correlate best with the preferred orientation of orthopyroxene (001) axes, and to a lesser extent with clinopyroxene [001] axes and plagioclase (001) layers for which EBSD data are available. Because the orientation of the magnetic fabric appears to be independent of MCU layer, similar relationships can be assumed throughout the intrusion.

Magnetic anisotropy, both AMS and AARM, loosely reflects the macroscopic foliation and lineation, with the minimum susceptibility being approximately normal to foliation (Figure 11). A detailed comparison shows, however, deviations from this general trend for some sites, especially in the northeast of the intrusion in terms of lineations. Possible reasons for this are (1) that the magnetic field is deviated due to the strong anomalies in the region, so that compass-based orientations from previous fabric studies may need to be corrected for, (2) specimens are affected by small-scale heterogeneities in texture, or (3) that the AMS fabric is not parallel to the texture.

Charlier et al. (2005) reported a faster cooling rate in the Teksevatnet area, i.e. the northeastern part of the intrusion, and a more orthocumulate-like texture. To understand whether the magnetic lineation and foliation are expected parallel to mineral fabric, it is important to know which mineral(s) carry the AMS.

6.3 Carriers of anisotropy

Even though the bulk magnetic properties are clearly dominated by magnetite, or hemo-ilmenite in magnetite-free specimens, this is not necessarily the case for AMS. It has been shown repeatedly that paramagnetic minerals may be responsible for anisotropy in rocks whose bulk magnetic susceptibility is dominated by ferromagnetic minerals (Borradaile, 1987; Borradaile et al., 1985/86; Hirt et al., 1995; Hounslow, 1985; Rochette, 1987; Rochette et al., 1992; Rochette and Vialon, 1984).

Specifically in a mafic layered intrusion, Maes et al. (2008) reported that the AMS is carried by paramagnetic minerals in some parts of the intrusion, and by magnetite in other parts. For a complete understanding of the magnetic fabrics, it is thus essential to carefully evaluate which mineral(s) is carries the anisotropy.

Potential carriers need to comply with the following observations:

- mineralogy as observed in thin sections, and magnetic mineralogy as determined from rock magnetic experiments, including which type of remanence anisotropy they carry
Figure 11: Schematic sketch of processes and mineral properties causing the magnetic fabric (top). (bottom) Mean foliation and lineation of previous petrofabric and low-field AMS studies (black – Paludon et al. 1994, grey – Boile et al. 2000) and magnetic foliation and lineation from low-field AMS of the present study (blue); site means of at least 5 specimens, and sufficiently small confidence angle. Insets on the right show blow-ups of the northeastern part of the BKS.
- correlation between magnetic fabric and rock texture, and orientation of the magnetic fabric
 independent of MCU layer, but with smaller degree of anisotropy in magnetite-free samples.
- similar orientation of AMS and AARM, i.e. both controlled by the same grains or by different grains
 that give rise to the same magnetic fabric
In the following sections, the expected magnetic fabrics of all relevant minerals and their potential as
AMS carriers will be discussed.

6.3.1 Expected AMS and anisotropy of remanence of main minerals in the BKS
Main minerals that may contribute to AMS in the BKS include plagioclase, pyroxene, and hemo-
ilmenite and MD magnetite discrete grains. The magnetic susceptibility and AMS of plagioclase is
weak and can thus be neglected (Biedermann et al., 2016).

In clinopyroxene crystals, the maximum and minimum susceptibilities lie within the (010)
plane and are tilted ±45° to the [001] axis. In single crystals of orthopyroxene, the maximum
susceptibility is parallel to the (001) axis, and the minimum parallel to (010), and the AMS ellipsoid
has a prolate shape (U varies from -0.2 to -0.7; Biedermann et al., 2015; cf. Figure 11). These single-
crystal properties can explain the correlation between maximum susceptibility and orthopyroxene
(001) axes in the BKS specimens. Anisotropic physical properties of rocks can be modelled provided
that they depend on the minerals’ bulk properties, when their orientation distribution function and
single crystal properties are known (Mainprice et al., 2011; Mainprice and Humbert, 1994). Thus, the
AMS contribution of orthopyroxene, clinopyroxene and the combination of both was modelled in
MTex (Hielscher and Schaeber, 2008), based on EBSD data, and averaged augite and enstatite
tensors from Biedermann et al. (2015). The modelled orthopyroxene AMS dominates over that of the
clinopyroxene. A comparison of measured and modelled AMS directions for selected specimens is
shown in Figure 12. The modelled k' reaches a maximum of 1.0×10^{-5} (SI); orders of magnitude below
the measured k' in the respective specimens (Table 2), and a factor of 3 lower than the minimum
measured k' in the intrusion. Thus, whereas pyroxene clearly possesses an AMS, its contribution to
the overall AMS is minor to negligible. As pyroxenes are paramagnetic, they will not contribute to any
type of remanence anisotropy, unless they contain exsolutions of ferromagnetic minerals.

The CPO of discrete hemo-ilmenite grains is weak and no consistent relationship between the
hemo-ilmenite preferred orientation and AMS has been observed. Therefore, discrete hemo-ilmenite
grains are unlikely to add a major contribution to the AMS. Depending on its coercivity, which is
defined by the size of lamellae, hemo-ilmenite may add to the ApIRM.
MD magnetite possesses shape anisotropy owing to its internal demagnetizing field, so that AMS reflects grain shape (e.g. Borradaile and Jackson, 2010). Moreover, interaction between neighboring magnetite grains can lead to distribution anisotropy, which has been suggested as a source of AMS in igneous rocks (Hargraves et al., 1991). Thus, magnetite AMS is related to its SPO and arrangement of grains within the rock, i.e. the clustering into mafic bands and aggregates. The two sites with highest P-values, BK44 and BK47, possess well-defined layers of dark minerals at the sample scale. Distribution anisotropy of MD magnetite can explain why the minimum susceptibility is observed normal to magmatic layering or foliation. Where present, particularly in layers d, e, and f, magnetite is likely the main carrier of the AMS. Though it is an inefficient carrier of remanence, MD magnetite can contribute to the anhysteretic remanence, and due to its large abundance, it may well constitute the main carrier of AARM.
6.3.2 Expected AMS and anisotropy of remanence of ferromagnetic exsolution in pyroxene

Interestingly, the magnetic fabric appears to be linked to the CPO of orthopyroxene also in specimens whose k' exceeds that of pyroxene by several orders of magnitude, and is so large that anisotropy is most likely caused by ferromagnetic minerals. Hemo-ilmenite lamellae with strong preferred orientation can be seen in both pyroxenes, and elongated, commonly oxy-exsolved, magnetite grains in clinopyroxene, by optical microscopy, and a more detailed EBSD map revealed distinct orientation relationships. Thus, pyroxene CPO results in preferred orientation of hemo-ilmenite and magnetite within the pyroxenes. Hemo-ilmenite exhibits an oblate AMS, with the minimum susceptibility parallel to the (0001) direction (Robinson et al., 2013). The dominant orientation relationship of hemo-ilmenite in orthopyroxene, (0001)//(100), will cause an AMS carried by hemo-ilmenite with minimum susceptibility parallel to (100) of the orthopyroxene. The minor fraction, (11-20)//(010), will lead to a slightly larger magnetic susceptibility parallel to the orthopyroxene (001) axis, than parallel to its (010) axis, which is consistent with the relationship between CPO and AMS presented in 6.2. The same dominant orientation relationship has been reported by Brown and McEnroe (2004) in the Egersund-Ogna anorthosite. The contribution of hemo-ilmenite exsolution to the AMS has been modelled for specimen BK2015_4_1b, for which detailed EBSD data was available. Single crystal properties were approximated by tensors as calculated from AMS measurements on hemo-ilmenite ores with planar fabric by Hargraves (1959), and by single crystal data from Robinson et al. (2006), assuming a rotationally oblate shape. This leads to k' equal to 6.6×10^{-4}, and 4.2×10^{-3}, respectively, approximately an order of magnitude lower than k' measured on the same specimen.

Magnetite exsolution are extended within the (010) plane of clinopyroxene. This is consistent with results shown by Feinberg et al. (2004), who describe magnetite exsolution either parallel to [100] or [001], together defining the (010) plane of clinopyroxene. Frandsen et al. (2004) describe elongated, blade- and rod-shaped, PSD and MD magnetite exsolution within clinopyroxene. Due to shape anisotropy, the maximum susceptibility from magnetite exsolution is expected to lie within the (010) plane, and the minimum normal to (010). Consistent with this, the ferromagnetic contribution to the AMS in clinopyroxene crystals shows a minimum susceptibility normal to the (010) plane, and a maximum between [100] and [001] (Biedermann et al., 2015). Thus, magnetite exsolution in clinopyroxene cannot account for the observed directional correlation between AMS and clinopyroxene CPO, and they are not major contributors to the AMS, nor to the AARM.
6.3.3 AMS carriers in each layer of the BKS intrusion

Layers a and c are nominally magnetite-free, however, magnetic data indicate that small amounts of magnetite are present in some of these sites, in agreement with McEnroe et al. (2009a). Only in specimens of Group (3), and BK2015_29 (Group (2)) do the rock magnetic results agree with petrographic studies, and indicate absence of magnetite. These specimens display significant AMS, with k' up to 5×10^4, but no AARM or ApIRM. Based on these observations, and the AMS directions, orthopyroxene is the most likely candidate to carry the AMS. However, the observed k' is higher than previously observed for pyroxene alone, and samples from the a layers do not contain significant amounts of pyroxene. Thus, we suggest that hemo-ilmenite also contributes to the AMS, even though it does not carry a significant ApIRM at 1 T magnetizing fields.

In Group (2), k' varies between 3.9×10^{-5} to 3.3×10^{-2}, and is on the order of 10^{-4} for most specimens. The variation is likely related to the amount of magnetite present. AARM is significant in ca. 2/3 of the specimens, and ApIRM is significant in all measured specimens except one. Depending on whether AARM, ApIRM or both are significant, the AMS is most likely carried by magnetite, hemo-ilmenite or a combination.

Layers d – f (Group(1)) contain large amounts of oxy-exsolved magnetite. The degree of anisotropy varies over several orders of magnitude, and maximum values for k' are on the order of 10^{-1}. All but two specimens of Group (1) display a strong AARM, whereas the ApIRM may or may not be significant. Such high k', and the strong AARM approximately coaxial to the AMS, indicates that magnetite is the dominant AMS carrier in these rocks. Magnetite exsolutions in clinopyroxenes cannot account for the observed orientations of AMS and AARM principal axes. Therefore, a SPO and/or distribution anisotropy of discrete MD magnetite grains is the most likely source of anisotropy in these rocks. Certain specimens in this group also possess ApIRM, indicating that hemo-ilmenite contributes to the anisotropy in these specimens.

Preferentially oriented hemo-ilmenite exsolutions have been identified by optical microscopy in specimens from all groups. Thus the lack of an ApIRM fabric, especially in specimens from Group (1), could be explained by a low signal-to-noise ratio in the remanence measurements, related to the relative abundances of hemo-ilmenite and magnetite, and/or our inability to fully saturate the hemo-ilmenite in some of these specimens, owing to a larger coercivity. More work will be needed to determine the contribution of hemo-ilmenite to the AMS. Torque magnetometry has been used to separate AMS components due to paramagnetic minerals, magnetite, and high-coercivity hematite (Martín-Hernández and Hirt, 2004) and may be able to resolve the contributions from paramagnetic minerals, magnetite and hemo-ilmenite in the rocks from the BKS intrusion.
To summarize, our data shows that the AMS of certain specimens is dominated by MD magnetite, whereas in others it is carried by a combination of hemo-ilmenite and pyroxene. Thus, similar to e.g. the mafic layered Insizwa sill (Ferré et al., 2002; Maes et al., 2008), the dominant carrier of the AMS varies in accordance with petrographic layering. Also the AMS parameters change with mineralogy, i.e. both P and k' are generally lower in a and c-layers than in d – f-layers. The orientation of the AMS principal axes, however, appears independent of the mineral carrier, or of whether the AMS is due to SPO and distribution anisotropy (MD magnetite) or magnetocrystalline anisotropy (hemo-ilmenite and pyroxene). A plausible explanation for this behavior is the common deformation experienced by each mineral phase, causing a SPO/distribution anisotropy of discrete magnetite parallel to the pyroxene CPO.

6.4 Geological implications

If the magnetic fabric is taken as a proxy for the macroscopic fabric, it confirms the syncline shape of the intrusion as described from structural, gravity and seismic investigations (Bolle et al., 2002; Deemer and Hurich, 1997; Paludan et al., 1994; Smithson and Ramberg, 1979). In particular, the data presented here agree with Paludan et al. (1994)'s observation of an overturned limb in the northeast of the Bjerkreim lobe of the BKS intrusion: the orientation of the minimum susceptibility axes indicates a magnetic foliation dipping outward. Previous studies (Bolle et al., 2000; Paludan et al., 1994) describe foliation-dominated fabrics on the limbs and lineation-dominated fabrics in the hinge zone. In contrast, magnetic fabrics, both AMS and AARM, are mostly prolate throughout the intrusion. Especially, strongly magnetic sites in the E and NE display prolate magnetic fabrics. Magnetic fabrics are most consistent on the limbs of the fold, while some variation is observed in the early MCUs and the hinge zone, which agrees with observations by Paludan et al. (1994), who describe that the magmatic layering and foliation are strongest and parallel to one another on the limbs. In the hinge zone, layering is weaker and foliation is parallel to the axial plane of the fold, at an angle to the layering. It appears that magnetic fabrics may reflect either the layering or foliation depending on the site.

Magnetic fabrics in the cumulate series generally agree with AMS in the acidic rocks as described by Bolle et al. (2000). However, detailed comparison shows that whereas the magnetic lineations of the acidic rocks (maximum susceptibility axes) consistently plunges towards the centre of the intrusion, the lineation of the cumulates differs in the NE and E, where it plunges towards the W and N, respectively, parallelling the structural contact of the intrusion (cf. Fig. 11). Thus, the present data do not confirm the purely convergent flow pattern as described for the acidic rocks by Bolle et al. (2000), but instead may support the interpretation of Paludan et al. (1994) of additional...
shear components on the limbs of the syncline, also resulting in the locally overturned limb along the northeastern contact.

7. Conclusions
Magnetic fabrics have been measured on 361 specimens from the Bjerkreim lobe of the BKS layered intrusion. Two oxide minerals are identified as magnetic carriers: (1) hemo-ilmenite which occurs in layers a-e, and (2) magnetite, which dominates in layers d, e, and f, and may be present in small amounts in layers a and c. Because the magnetic susceptibility and saturation magnetization of magnetite are far higher than that of hemo-ilmenite, it can contribute a significant amount to the magnetic fabric in these layers. Anisotropy of magnetic susceptibility and remanence have been compared to macroscopic fabrics and CPO data as obtained from EBSD. The magnetic anisotropy appears to correlate with orthopyroxene, and to a lesser extent clinopyroxene, texture, i.e. the minimum susceptibility and anhysteretic remanence correlate with the (100) axes of ortho- and clinopyroxene, and the maximum susceptibility and anhysteretic remanence direction coincide with the orthopyroxene [001] axes. This strongly implies that the bulk-rock anisotropy is somehow due to the pyroxene orientations. However, the k' displayed by most specimens is much higher than for single pyroxene crystals, and pyroxene cannot directly carry the anisotropy of remanence. Hemo-ilmenite exsolutions in orthopyroxene and clinopyroxene have specific orientation relationships to their host, which can explain why the magnetic fabrics best relate to pyroxene CPOs. The magnetite SPO and distribution is likely coaxial to the pyroxene fabric because they underwent the same deformation history. More work will be needed to determine the contribution of hemo-ilmenite to anisotropy. The results presented here can be used for future structural interpretation of the BKS, paleomagnetic studies, and the interpretation of magnetic anomalies over the BKS layered intrusion.

Acknowledgments
Alexander Michels, Norwegian University of Science and Technology (NTNU), is thanked for assistance during fieldwork. We are grateful to Bjarne S.G. Almqvist, Uppsala University, who provided access to their Kappabridge for initial AMS Measurements. Peat Solheide is thanked for technical assistance during sample preparation and measurements at the Institute for Rock Magnetism (IRM), University of Minnesota. This study was financed by the Swiss National Science Foundation, project P2EZP2-155517 to A. Biedermann, NTNU and NFR grant 222666 to S. McEnroe. The first author had a visiting fellowship at the IRM, which is supported by the Instruments and Facilities program of the US National Science Foundation, Division of Earth Sciences. FH was supported through DFG grant He3258/2-1. Eric C. Ferré and Philippe Robion are thanked for their careful and thorough reviews, and Philippe Agard for the handling of the manuscript and his additional comments, all of which helped to improve the manuscript.
References

Clark, D.A., Schmidt, P.W., 1994. Magnetic properties and magnetic signatures of BIFs of the Hamersley Basin and Yilgarn Block, Western Australia. In: Australian Mineral Deposits, Geology and Geophysics Department (Key Centre) & UWA Extension, University of Western Australia 26, 343-354.

Ishikawa, Y., Akimoto, S., 1958. Magnetic property and crystal chemistry of ilmenite (MeTiO3) and hematite (αFe2O3) system. II. Magnetic property. Journal of the Physical Society of Japan 13, 1298-1310.

Verwey, E.J.W., 1939. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 144, 327-328.

Table Captions

Table 1: Sample list, summarizing stratigraphic unit and AF demagnetization groups. * indicates samples from Brown and McEnroe (2015).

Table 2: Comparison of modelled and measured mean deviatoric susceptibility (k') for specimens on which EBSD data was available. Modelled k' is given for orthopyroxene (Opx), clinopyroxene (Cpx), a combination of both pyroxenes, and hemo-ilmenite. Two different single crystal tensors have been used for the latter.

Supplementary Material

Table A: Density, mean magnetic susceptibility, low-field AMS results, and magnetite contents estimated from magnetic data and image analysis. k_1, k_2 and k_3 are normalized principal magnetic susceptibility values, D_1, D_2, D_3 and I_1, I_2, I_3 indicate the declinations and inclinations of the corresponding eigenvectors. Directions are projected to the lower hemisphere and given in a geographic coordinate system, where $D=0$, $I=0$ indicates North. * marks samples for which compass readings have been corrected.

*Magnetite content from Ms values is reported as: mean [min; max], due to significant variations of Ms for measurements on different sub-samples and in different orientations.

Table B: Anisotropy of remanent magnetization. Maximum, intermediate and minimum indicate the principal values of remanence, k_1, k_2 and k_3 are normalized by the mean remanence for a direct comparison to low-field AMS data.

Figure A: CPO of individual mineral phases, AMS (black symbol with thin white line) and AARM (thick white line) principal directions. Lower hemisphere stereoplots in geographic coordinate system. Same colorscale for orientation density functions on all plots.

Figure B: Lower hemisphere equal area stereoplots showing AMS, AARM and ApIRM principal axes for each site.