Magnetic anisotropy in clinopyroxene and orthopyroxene single crystals

Andrea R. Biedermann1, Thomas Pettke2, Christian Bender Koch3 and Ann M. Hirt1,*

1 Institute of Geophysics, ETH Zurich, Sonneckstrasse 5, 8092 Zurich, Switzerland
2 Institute of Geological Sciences, University of Bern, Baltzerstrasse 1-3, 3012 Bern, Switzerland
3 Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark

The final version of this article is available from the JGR website, doi: 10.1002/2014JB011678

Keywords

AMS (anisotropy of magnetic susceptibility); magnetic properties; single crystal clinopyroxene; augite, diopside, spodumene, aegirine orthopyroxene; enstatite
Abstract
Pyroxenes constitute an important component in mafic igneous and metamorphic rocks. They often possess a prismatic habit and their long axis, the crystallographic c-axis, helps define a lineation in a textured rock. Anisotropy of magnetic susceptibility (AMS) serves as a fabric indicator in igneous and metamorphic rocks. If a rock’s AMS is carried by pyroxenes, it can be related to their crystallographic preferred orientation and degree of alignment. This requires knowing the intrinsic AMS of pyroxene single crystals. This study provides a comprehensive low-field and high-field AMS investigation of chemically diverse ortho- and clinopyroxene crystals in relation to crystal structure, chemical composition, oxidation state of Fe, and the possible presence of ferromagnetic inclusions. The paramagnetic anisotropy, extracted from high-field data, shows clear relationships to crystallographic directions and Fe concentration both in clino- and orthopyroxenes. In the diopside-augite series, the intermediate susceptibility is parallel to b, and the maximum is at 45° to the c-axis. In aegirine, the intermediate axis remains parallel to b, while the maximum susceptibility is parallel to c. The AMS of spodumene depends on Fe concentration. In enstatite, the maximum susceptibility aligns with c and the minimum with b, and in the case of hypersthene, the maximum susceptibility is normal to the exsolution lamellae. Magnetite inclusions within augite possess a ferromagnetic anisotropy with consistent orientation of the principal susceptibilities, which dominates the low-field anisotropy. These results provide better understanding of magnetic anisotropy in pyroxenes and form a solid basis for interpretation of magnetic fabrics in pyroxene-bearing rocks.
1 Introduction

Pyroxenes are common minerals in mafic and ultramafic igneous and metamorphic rocks. Orthopyroxene in particular is an important constituent of the Earth’s upper mantle [Deer et al., 1978]. Pyroxenes are single-chain silicates in which \((\text{Si}_2\text{O}_6)^4^-\)_n chains are linked by cations (Figure 1). The cations can occupy two non-equivalent sites, M1 and M2. In clinopyroxenes, the M2 site is strongly distorted with an irregular six-fold (spodumene) or eight-fold (augite, diopside, aegirine) coordination, and generally occupied by Ca, Na, K or Li. The M1 site is coordinated by a nearly regular octahedron and generally occupied by the smaller cations Mg, Fe\(^{2+}\), Fe\(^{3+}\), Mn, Al, Ti. Fe\(^{2+}\) is normally located in the M1 site, but if not enough Ca (or other large cations) is present to fully occupy M2, Fe\(^{2+}\) prefers M2 sites. Clinopyroxene is monoclinic with space group \(C2/c\). Orthopyroxenes contain no significant amounts of Ca and due to the overall smaller radius of the cations in the M1 and M2 sites, their crystal structure is orthorhombic (space group \(Pbca\)). Similar to clinopyroxenes, orthopyroxenes possess M1 and M2 sites, where the M1 site is coordinated in an almost regular octahedron, and the M2 sites have a distorted six-fold coordination. Fe\(^{2+}\) prefers the M2 sites in orthopyroxenes [Deer et al., 1978]. The structure of both pyroxene groups consists of long covalently bonded chains in the \(c\)-direction, which are linked by weaker ionic bonds in directions perpendicular to the chains; consequently clinopyroxenes and orthopyroxenes have well-defined cleavage on \{110\} and \{210\}, respectively [Deer et al., 1978]. Therefore, pyroxenes often display prismatic habits and their \(c\)-axis aligns with the rock lineation, thus indicating flow directions or deformation in igneous and metamorphic rocks, respectively.
Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for rock texture [e.g. Borradaile and Henry, 1997; Hrouda, 1982, and references therein]. Magnetic susceptibility is a second-order tensor property, represented by a symmetric 3x3 matrix whose eigenvalues correspond to the principal susceptibilities $k_1 \geq k_2 \geq k_3$, and the respective eigenvectors reflect their directions. Magnetic anisotropy can be carried by ferromagnetic grains or by Fe-bearing silicates, e.g. pyroxene, with crystallographic preferred orientation. For example, the AMS of an aegirine-augite syenite from the Triunfo pluton in Brazil is controlled by aegirine-augite [Archanjo and Bouchez, 1997]. The authors found an oblate magnetic fabric and suggested that this may be caused by (1) an oblate single crystal AMS of the clinopyroxene, or (2) the compaction of the magma chamber after emplacement. A conclusive interpretation of the magnetic fabric was not possible, because the single crystal properties of clinopyroxenes are not well established. This study illustrates that a good
quantitative understanding of single-crystal magnetic properties is essential before using the magnetic fabric as a strain indicator.

At present, there are only a few studies on the intrinsic magnetic anisotropy of clinopyroxene and orthopyroxene crystals. Some of these indicate that the maximum susceptibility in pyroxene is not always parallel to the crystallographic c-axis. In the early 20th century, Finke [1909] measured one augite crystal and found that k_1 is at a -7° angle to the c-axis. Later, Parry [1971; cited in Wagner et al., 1981] measured 19 augite crystals using high-field torque magnetometry and concluded that the intermediate susceptibility k_2 is always parallel to b and k_1 and k_3 lie in-between the c- and ±a-axes. Lagroix and Borradaile [2000] measured four clinopyroxenes, with a special focus on the ferromagnetic inclusions within the pyroxenes, and found that in three crystals the intermediate susceptibility is parallel to b, whereas no symmetry was found for k_1 or k_3. Two studies exist on orthopyroxenes; Wiedenmann et al. [1986] studied synthetic and natural Fe-rich orthopyroxene and found that k_1 is parallel to b and antiferromagnetic ordering sets in at sufficiently low temperatures. Lagroix and Borradaile [2000] measured five orthopyroxene samples and found that the maximum susceptibility is parallel to c. They did not find any relationship between k_2 and k_3 to either a or b and attributed this to ferromagnetic inclusions or misorientation.

These few investigations show no consistent relationship between the principal susceptibility axes and the crystallographic axes. Studies on other mineral groups have shown the influence of chemical composition on the degree of AMS and orientation of principal axes [Almqvist et al., 2010; Biedermann et al., 2014b; Schmidt et al., 2007a]. The exact chemical composition of the crystals was only given in one study on orthopyroxene [Wiedenmann et al., 1986]; therefore, little information is available on the effects of chemical composition, or
site distribution and oxidation state of Fe, which may vary considerably, on the magnetic
properties.

In this study, a systematic investigation of magnetic anisotropy in clinopyroxene and
orthopyroxene of various compositions is conducted. Bulk chemistry, oxidation states of Fe
and site distributions are determined in order to gain a complete understanding of factors that
influence the degree of paramagnetic anisotropy and the orientation of the principal axes with
respect to the crystallographic axes.

2 Material and methods

2.1 Samples and sample preparation

Samples were collected to cover a wide range of chemical compositions and include
crystals from the mineral groups diopside, augite, aegirine, spodumene and enstatite. Good-
quality single crystals were obtained from different sources; (1) the Natural History Museum
Basel (labeled NMB), (2) the ETH Mineral Collection, (3) mineral suppliers, and (4) field
work in Tenerife and on Isola Vulcano. In addition, two hypersthene samples, consisting of
lamellar intergrowth of clino- and orthopyroxene, were measured. An overview of samples
and their localities is given in Table 1.

If needed, samples were first separated from the host rock. They were cleaned in
ethanol in an ultrasonic cleaner and weighed. Crystal orientation was determined based on the
crystal habit and Laue X-ray diffraction, which was performed at the Laboratory of
Crystallography, ETH Zurich. Laue images were processed with the OrientExpress 3.4 crystal
orientation software [Laugier and Filhol, 1983]. Based on Laue images obtained from
different crystal faces, it was possible to identify twinning on {100} in some of the augite
crystals and one aegirine crystal. Three of the aegirine samples showed a superposition of two
Laue patterns corresponding to two individual crystals with slightly different orientation. Because both features are common in clinopyroxene, these samples were also included in the study (cf. Table 1). The oriented samples were glued into cylindrical plastic holders for the magnetic measurements. Surfaces were polished prior to chemical analysis if required.

2.2 Chemistry

2.2.1 Bulk chemistry

Bulk chemical composition was determined using laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) at the Institute of Geological Sciences, University of Bern. LA-ICP-MS was preferred over electron probe microanalysis because LA-ICP-MS analyzes a several orders of magnitude larger sample volume per spot including possible inclusion materials (minerals or melt inclusions), and because entire crystals or large pieces thereof can be analyzed without the need for perfectly polished sections. Four to six spots were measured on crystal surfaces, polished crystal surfaces or/and cleavage planes for each sample. Measurements were performed with a beam diameter of 90 or 120 µm, after the surface had been cleaned with a larger beam. SRM610 and SRM612 from NIST were used for external standardization, with values reported in Spandler et al. [2011]. The measurement procedure and settings are described in Pettke et al. [2012]. The data was processed using SILLS [Guillong et al., 2008], normalized to 100 wt.% total major oxides and averaged for further investigation. Note that additional information is needed in order to determine the oxidation state of Fe. Therefore, the total Fe concentration was determined assuming that all Fe is present as Fe$^{2+}$ in diopside, augite, spodumene and the orthopyroxenes. For aegirine, it was assumed that all Fe is Fe$^{3+}$, according to the ideal chemical composition.

2.2.2 Mössbauer spectra
In order to determine the relative proportion of Fe$^{2+}$ and Fe$^{3+}$ in the crystals and investigate details in the coordination sites, Mössbauer spectra were measured of selected clinopyroxene samples. Absorbers were prepared by mixing powdered mineral samples and BN and transferring the mix into PerspexR sample holders. Spectra were obtained at room temperature using a conventional constant acceleration spectrometer with the absorber perpendicular to the gamma ray direction. The spectrometer was calibrated using the spectrum of a thin foil of natural iron at room temperature and isomer shifts are given relative to the center of this absorber. The spectra were fitted using a combination of doublet components having Lorentzian line shape, and it was assumed that relative spectral areas are identical to relative abundances of the components.

2.2.3 Recalculation of mineral formulae

Mineral formulae were recalculated based on the assumption that four cations (including Si) are present per formula unit. The cations were then assigned to the tetrahedral sites within the chains, where Al can substitute for Si, and the M1 and M2 sites. Where Mössbauer data was available, the Fe$^{3+}$ concentration was determined based on these. In order to test the analyses, the total positive charge, which should amount to 12, was calculated.

2.3 Magnetic measurements

2.3.1 Characterization of ferromagnetic inclusions

Many minerals, even single crystals, contain inclusions of other phases. For magnetic studies, ferromagnetic inclusions such as magnetite are of major interest, because they possess a large susceptibility. Hence, even small fractions of such inclusions strongly influence the bulk magnetic properties of the sample. Acquisition of isothermal remanent magnetization (IRM) was measured in order to verify the presence of ferromagnetic inclusions. The
magnitude of the saturation IRM provides an estimate of the concentration of ferromagnetic material in the sample. The crystals were magnetized first along the \(c\) direction in a 2 T field using an ASC Scientific IM-10-30 Pulse Magnetizer. Subsequently the crystal was remagnetized along the \(+c\) direction in increasing fields between 20 mT and 2 T. The magnetization was measured on a 2G Enterprises, three-axis, cryogenic magnetometer (Model 755) after each step.

2.3.2 Magnetic susceptibility and anisotropy of magnetic susceptibility

Low-field susceptibility was measured on an AGICO MFK1-FA susceptibility bridge, in fields of 200 A/m or 500 A/m and a frequency of 976 Hz. Magnetic susceptibility was measured in 15 directions. Directional susceptibility measurements were repeated 10 times for each position and averaged, in order to receive the best possible signal quality [Biedermann et al., 2013]. The full magnetic susceptibility tensor was computed from these directional measurements. Mean susceptibility \(k_{\text{mean}}\) is calculated as the arithmetic mean of the three eigenvalues of this tensor. The degree of the anisotropy will be described by \(k' = \sqrt{\left[(k_1 - k_{\text{mean}})^2 + (k_2 - k_{\text{mean}})^2 + (k_3 - k_{\text{mean}})^2\right]/3}\) and \(P = k_1/k_3\), and the shape of the AMS ellipsoid by \(U = (2k_2 - k_1 - k_3)/(k_1 - k_3)\) [Jelinek, 1981; 1984]. Even small amounts of ferromagnetic inclusions can dominate the low-field AMS. For this reason, high-field AMS was measured in addition to low-field AMS. High-field methods make it possible to isolate the component of the AMS carried by paramagnetic minerals alone. The high-field measurements were performed on a torque magnetometer, in various fields between 1.0 T and 1.5 T [Bergmüller et al., 1994]. In such high fields, the ferromagnetic magnetization is saturated, while the paramagnetic magnetization increases with the applied field. The different field-dependence allows for separation of the ferromagnetic from the paramagnetic components [Martín-Hernández and Hirt, 2001]. High-field AMS was determined both at
room temperature (RT) and at 77 K and is described by k' and U like the low-field AMS. At low temperature, the paramagnetic signal is enhanced [Schmidt et al., 2007b]. This enhancement can be quantified by $p'_{77} = \frac{k'(77\,\text{K})}{k'(RT)}$.

3 Results

3.1 Chemistry

Average chemical compositions are summarized in Table A (Online Supplementary). Whereas some samples show zonation, most are homogeneous on a crystal scale. The only exception is hypersthene (samples Hyp1 and Hyp2), which consists of Ca-rich clinopyroxene exsolution lamellae and Ca-poor orthopyroxene. For these samples, the composition given in Table A is the average of all measurements, hence represents the average high-temperature composition prior to exsolution. One augite, NMB46281, was too large to fit the ablation chamber and could thus not be analyzed by LA-ICP-MS. The samples cover a wide range of Fe concentrations, which lie between 0.005 and 29.6 wt.% FeO in the clinopyroxene and between 0.6 and 15.3 wt.% FeO in the orthopyroxene group. Other elements with strong magnetic moments were only present in small amounts: MnO < 0.7 and 0.3 wt.% Cr < 4050 and < 3000 µg/g and Ni < 1450 µg/g in clinopyroxene and orthopyroxene, respectively.

Representative Mössbauer spectra and fits are shown in Figure 2, and hyperfine parameters are given in Table 2. The spectra exhibit different characteristics for diopside, augite and aegirine. The diopside samples exhibit one dominant doublet (one high spin Fe$^{2+}$) and one unresolved Fe$^{3+}$ doublet overlapping the low velocity line of the Fe$^{2+}$ doublet, which yields 66 % Fe$^{2+}$ and 34 % Fe$^{3+}$ in the two samples. The augite samples exhibit three absorption peaks that are interpreted to be an overlap of two doublet components (one high
spin Fe$^{2+}$ and one high spin Fe$^{3+}$) resulting in Fe$^{2+}$ areas between ca. 60 and 80 % and Fe$^{3+}$ areas between ca. 40 and 20 %. The aegerine samples exhibit one dominant doublet of high spin Fe$^{3+}$, one minor, partially resolved Fe$^{2+}$, and one minor, unresolved Fe$^{2+}$ resulting in 80 to 87 % Fe$^{3+}$ and 13 to 21 % Fe$^{2+}$ in two sites. Different interpretations have been proposed for the varying doublets in clinopyroxenes [e.g. Abdu and Hawthorne, 2013; Redhammer et al., 2006], but because the main interest in this study lies on the relative proportions of Fe$^{2+}$ and Fe$^{3+}$, they will not be discussed further.

Figure 2: Characteristic Mössbauer spectra for selected samples.
Recalculated site occupancies are shown in Table B (Online Supplementary). The M2 sites of diopside and augite are mainly filled with Ca; however, not all samples contain enough Ca to occupy all M2 sites. Fe$^{2+}$ preferentially fills this Ca-vacancy, but in general the Fe$^{2+}$ concentration is higher in M1 than in M2 [Burns, 1993]. Therefore, and in accordance with Deer et al. [1978], all Fe$^{2+}$ is assigned to the M1 sites. The dominant cation in the M1 sites is Mg for diopside, and various combinations of Mg, Al and Fe$^{2+}$ in the augite samples. In aegirine, Na replaces Ca in the M2 sites, and the M1 sites contain mainly Fe. In the ideal formula, the latter is present as Fe$^{3+}$, which is confirmed by Mössbauer data on selected crystals. The M1 sites in spodumene are filled mainly by Al and the M2 sites by Li. For enstatite, only very small amounts of Ca are present and both M1 and M2 sites are occupied by Mg or Fe. In this configuration, Fe$^{2+}$ prefers M2 sites, whereas Fe$^{3+}$ and Al are preferentially located in M1 [Deer et al., 1978]. The site occupancies shown for hyperstene correspond to the homogeneous high-temperature orthopyroxene prior to exsolution.

3.2 Mass susceptibility

Mean mass susceptibility in clinopyroxene ranges from -5.86×10^{-9} m3/kg to 6.98×10^{-6} m3/kg for diopside, -3.78×10^{-8} m3/kg - 1.00×10^{-8} m3/kg for spodumene, 5.68×10^{-7} m3/kg – 6.73×10^{-7} m3/kg for aegirine, and covers a wide range from 1.57×10^{-7} m3/kg to 2.73×10^{-5} m3/kg in augite. One diopside and six spodumene crystals are diamagnetic. For orthopyroxene, the mean susceptibility lies between 7.00×10^{-9} m3/kg and 1.08×10^{-6} m3/kg (Table 3). According to Vernon [1961] and Bleil and Petersen [1982], the susceptibility of a paramagnetic material can be calculated based on the concentration of strongly magnetic ions such as Fe or Mn. In the crystal collection in this study, the concentrations of Mn or other cations with strong magnetic moments are low (Table A); thus the paramagnetic susceptibility can be estimated based on Fe concentration alone. For clinopyroxene, the effective magnetic moment of Fe$^{2+}$ is $6.06 \mu_B$ and for orthopyroxene it is $5.08 \mu_B$ [Parks and Akhtar, 1968]. No
experimental values are available for the effective magnetic moment of Fe$^{3+}$ in pyroxenes and therefore the theoretical value of 5.88μ_B is used [Parks and Akhtar, 1968; Vernon, 1961].

Thus, the theoretical paramagnetic susceptibility can be computed as $\chi = 2.70 \times 10^{-8} \text{Fe m}^3/\text{kg}$ for diopside, augite and spodumene, $2.54 \times 10^{-8} \text{Fe m}^3/\text{kg}$ for aegirine and $1.89 \times 10^{-8} \text{Fe m}^3/\text{kg}$ for orthopyroxene, where Fe is the Fe concentration in weight percent. A good agreement between calculated and measured susceptibilities was found for diopside and enstatite (Table 3, Figure 3). The calculation does not take into account the diamagnetic component, and therefore the theoretical susceptibility for spodumene is larger than that measured. For aegirine, the calculated susceptibility is generally lower than the measured one. This might be related to the fact that the effective magnetic moment is not well defined for Fe$^{3+}$ in clinopyroxene in general, and specifically in aegirine. All augite crystals and one diopside have significantly larger susceptibilities than expected; these can be attributed to ferromagnetic inclusions in the crystals (Figure 3a, inset).

Figure 3: Mean mass susceptibility as a function of Fe concentration for a) clinopyroxene, where the inset shows the large variation in susceptibility for some samples, particularly augite; and b) orthopyroxene. Solid lines represent theoretical susceptibility based on Fe concentration and assuming that Fe is present as Fe$^{2+}$.
3.3 Identification of ferromagnetic inclusions

IRM increases rapidly in low fields and remanent coercivity is low for all crystals except Aeg3, whose remanent coercivity is 185 mT. The augite and hypersthene samples show the highest IRM and exhibit remanent coercivities < 20 mT. This is indicative of a low coercivity phase, typically magnetite or maghemite. The ferromagnetic inclusions in Di5, Spod1, Aeg6 and En1 have higher remanent coercivities between 30 and 40 mT, which are still in the range expected for magnetite and maghemite. Their IRM is about four orders of magnitude lower than that of the augite and hypersthene samples. Saturation is reached below 1.0 T for most samples. However, the magnetization of En1 is approaching magnetic saturation up to 2.0 T, and Aeg3 is dominated by a high coercivity phase that is only approaching saturation above 1.4 T (Figure 4). In the samples with high IRM, the main remanence carrier reaches saturation below 1.0 T, which is a prerequisite for separation of ferromagnetic and paramagnetic contributions to the magnetic anisotropy.

3.4 Low-field AMS

Principal directions of the low-field AMS are shown in Figure 5 for each mineral group. The low-field principal directions are consistent for diopside; k_2 is parallel to the crystallographic b-axis, and k_1 and k_3 cluster at ca. ±45° from the c-axis within the a-c-plane. Augite shows a large variability in low-field principal directions. Part of the samples show a grouping of minimum susceptibility parallel to the crystallographic b-axis. In aegirine, the maximum low-field susceptibility clusters close to the c-axis, and the minimum is close to the crystallographic a^*-axis. Principal directions in spodumene are variable. The maximum principal axis of enstatite groups around the crystallographic c-axis. AMS shapes cover the whole range from prolate to oblate, especially for samples with weak anisotropy (Figure 6).
Many augites have oblate AMS ellipsoids, whereas those of the orthopyroxenes are prolate (Table 3).

Figure 4: Isothermal remanent magnetization (IRM) acquisition curves for representative clino- and orthopyroxene samples.
Figure 5: Equal area lower hemisphere stereoplots showing principal susceptibility directions for low-field AMS, ferromagnetic component of the high-field AMS at RT and paramagnetic component of the high-field AMS at RT and 77 K for each mineral group. Directions are given in a crystallographic reference frame or relative to the orientation of the lamellae in hypersthene.
3.5 Ferrimagnetic AMS

One sample each of diopside and hypersthene, and most augite crystals exhibit a significant ferromagnetic contribution to the high-field AMS. This ferromagnetic component was isolated and directions of the ferromagnetic principal susceptibilities are plotted in Figure 5. In most crystals, the minimum susceptibility of the ferromagnetic component is parallel to the crystallographic b-axis of the clinopyroxene. The maximum and intermediate ferromagnetic susceptibilities lie in the a-c plane, at a ca. 45° angle to the crystallographic c-axis. In hypersthene, the minimum and intermediate ferromagnetic susceptibilities lie in the plane of the exsolution lamellae, and the maximum normal to this plane. With two exceptions, the shape of the ferromagnetic AMS is oblate. The ferromagnetic anisotropy degree k' varies from $3.01 \times 10^{-10} \text{ m}^3/\text{kg}$ to $5.04 \times 10^{-8} \text{ m}^3/\text{kg}$ (Table 4).

3.6 Paramagnetic AMS

The paramagnetic component of the AMS was separated from the high-field AMS both at room temperature and at 77 K. Principal paramagnetic directions for each mineral group are shown in Figure 5, and the shape of the AMS ellipsoid and degree of anisotropy are show in Figure 6. Table 5 summarizes principal directions and AMS degree and shape parameters.
Figure 6: Modified Jelinek plot for low-field AMS (a,b) and isolated paramagnetic AMS at RT (c,d).
Data is plotted for clinopyroxene (a,c) and orthopyroxene (b,d).

3.6.1 Clinopyroxene

For diopside and augite, the intermediate principal susceptibility is generally parallel to the crystallographic b-axis, and k_j and k_3 lie in the a-c-plane, with k_j approximately 45° inclined towards the $-a^*$-axis with respect to the c-axis. The directions are better grouped at 77 K, where the paramagnetic signal is enhanced. Interestingly, the principal directions are rotated ca. 20° anticlockwise with respect to the principal directions for augite at room temperature. Diopside AMS is oblate for all samples except Di2, which is diamagnetic. Augite generally displays a prolate AMS ellipsoid. The degree of deviatoric susceptibility k' varies from 3.48×10^{-10} m3/kg to 4.45×10^{-9} m3/kg at room temperature in diopside and increases by a factor of 2.71 upon cooling to 77 K for Di2 and between 10.8 and 14.4 for the
other diopside crystals. In augite, \(k' \) is larger and ranges from \(3.09 \times 10^{-9} \) m\(^3\)/kg to \(1.10 \times 10^{-8} \) m\(^3\)/kg at room temperature. The increase in \(k' \) when cooling to 77 K as defined by \(p_{77}' \) is between 5.3 and 20.4, with the majority of samples showing \(p_{77}' \) between 11 and 17.

The principal susceptibility axes are oriented differently in aegirine: \(k_1 \) is parallel to the crystallographic \(c \)-axis, \(k_2 \) parallel to the \(b \)-axis and \(k_3 \) parallel to the \(a^* \)-axis. The directions group well for the larger crystals (> 4 g), whereas those of the smaller samples (< 0.5 g) are more scattered. AMS shapes cover a wide range from prolate to oblate, and \(k' \) varies from \(1.67 \times 10^{-9} \) m\(^3\)/kg to \(4.29 \times 10^{-9} \) m\(^3\)/kg. The deviatoric susceptibility is 8.30 – 11.65 times larger at 77 K.

Two types of behavior can be seen in spodumene; the Fe richer varieties have the minimum susceptibility parallel to the \(b \)-axis, whereas the Fe-poor ones have \(k_3 \) parallel to \(a^* \) at RT, but close to \(c \) at 77 K. AMS shapes vary considerably for individual samples, which is attributed to their weak susceptibility. The anisotropy degree \(k' \) ranges from \(2.66 \times 10^{-11} \) m\(^3\)/kg to \(1.01 \times 10^{-9} \) m\(^3\)/kg at room temperature and increases 5.54 to 20.75 times when measured at 77 K. The large increase in Spod1 and Spod2 relates to the contribution of a diamagnetic component at RT.

The degree of the paramagnetic AMS \(k' \) shows a general increase with Fe concentration for spodumene, diopside and augite (Figure 7). Therefore, \(k' \) can be estimated from the Fe concentration by

\[
k' = 8.28 \times 10^{-10} \times Fe \text{ m}^3/\text{kg}
\]

where \(Fe \) is the Fe concentration in wt.% FeO. Aegirine possesses a lower degree of anisotropy than predicted by this trend, which is discussed below.
Figure 7: Anisotropy degree (k') as a function of Fe concentration for a) clinopyroxene, in which Fe$^{2+}$/Fe$^{3+}$ ratios are shown where available; and b) orthopyroxene.

3.6.2 Orthopyroxene

Enstatite has its maximum principal susceptibility parallel to c, the intermediate susceptibility parallel to the a-axis and minimum parallel to the b-axis, both at room temperature and at 77 K. The AMS ellipsoid has a prolate shape and k' varies between 3.67×10^{-10} m3/kg and 7.83×10^{-9} m3/kg. The anisotropy increases by a factor of 7.27 – 8.63 when the measurement temperature is 77 K compared to room temperature.

The maximum susceptibility of hypersthene, which consists of lamellae of orthopyroxene and Ca-rich clinopyroxene, is normal to these exsolution lamellae, whereas k_2 and k_3 lie in the plane of the lamellae. For hypersthene, the AMS has a less prolate shape than for enstatite, probably due to a superposition of the orthopyroxene and clinopyroxene anisotropies. p_{77}' varies between 7.27 and 7.31.

Similar to the clinopyroxene crystals, k' of enstatite increases with Fe concentration (Figure 7b):

$$k' = 7.80 \times 10^{-10} \text{Fe m}^3/\text{kg}.$$
Hypersthene has a slightly higher AMS degree than expected from the enstatite trend and its Fe concentration. This may be explained by the superposition of clino- and orthopyroxene anisotropy, as \(k' \) is larger for clinopyroxene than orthopyroxene for a given Fe content.

4 Discussion

4.1 Mass susceptibility and chemical composition

Vernon [1961] proposed that magnetic susceptibility can be used as a measure of Fe and Mn contents in silicates. A good correlation is observed between Fe concentration and susceptibility in diopside, aegirine and enstatite. In augite and hypersthene, however, the susceptibility appears to be mainly controlled by the amount of ferromagnetic inclusions, such as magnetite, within the crystals. This effect is larger than the dependence on Fe concentration in the structure and illustrates the importance of knowing which mineral carries the magnetic susceptibility. In the absence of ferromagnetic inclusions within clinopyroxene or orthopyroxene, the mass susceptibility shows a good linear correlation with Fe concentration.

4.2 Paramagnetic anisotropy degree and its dependence on Fe concentration

The degree of anisotropy, \(k' \), increases with Fe concentration in both clinopyroxene, with the exception of aegirine, and orthopyroxene. There is a larger variation in this relationship in clinopyroxene (Figure 7), whereas it is more linear in enstatite. Aegirine has a small anisotropy degree given its large Fe content. Mössbauer spectroscopy revealed that aegirine mainly contains Fe\(^{3+}\), whereas Fe\(^{2+}\) dominates in the diopside-augite series. It has been argued that Fe\(^{2+}\) possesses a strong ionic magnetic anisotropy in the trigonal crystal field in micas, whereas Fe\(^{3+}\) is isotropic [Ballet and Coey, 1982; Beausoleil et al., 1983]. Because the M1 sites in clinopyroxene are similar to the M2 sites in biotite in terms of the crystal field to which the cation is subjected [Burns, 1993], a similar argument could hold for aegirine. Therefore, if the Fe\(^{3+}\) in aegirine is isotropic, only Fe\(^{2+}\) would cause an anisotropy. The
presence of Fe\(^{3+}\), hence variable Fe\(^{2+}\)/Fe\(^{3+}\), may also explain some of the scatter in \(k'\) found in
the diopside and augite crystals that have similar total Fe concentration. Orthopyroxene rarely
incorporates Fe\(^{3+}\) and thus shows a better constrained linear relationship between AMS degree
and Fe concentration.

The degree of anisotropy increases by varying amounts at 77 K, with an increase
between 3 and 21 in the diopside-augite series; 8 and 12 for aegirine; and 5 and 21 for
spodumene. No clear dependence is found between \(p_{77}'\) and Fe concentration in
clinopyroxenes (Figure 8). The diopside Di2 and spodumene NMB444 show low \(p_{77}'\) values
of 2.71 and 5.54, respectively. The spodumene crystals Spod1 and Spod2 display large \(p_{77}'\)
between 12.23 and 20.75. Together with the negative or weak positive mean susceptibilities,
this suggests a contribution of a temperature-independent diamagnetic AMS in these crystals.
Interestingly, \(p_{77}'\) is close to 8 in all orthopyroxenes, a value that is similar to \(p_{77}\) found in
siderite [Schmidt et al., 2007a], the sheet silicate minerals muscovite, phlogopite and chlorite
[Biedermann et al., 2014a], olivine [Biedermann et al., 2014b], and some members of the
amphibole group [Biedermann et al., in review].

Figure 8: Factor \(p_{77}'\) as a function of Fe concentration for the different mineral groups: a)clinopyroxene and b) orthopyroxene.
4.3 Paramagnetic principal directions and crystal structure

In clinopyroxene, which possesses monoclinic symmetry, one of the principal susceptibility directions has to be parallel to the crystallographic b-axis, whereas there are no constraints on the other two principal susceptibility directions. These constraints are imposed by crystal symmetry \cite{Neumann, 1885; Nye, 1957}. The paramagnetic k_2-axes are parallel to the b-axis in diopside, and the minimum and maximum susceptibilities lie in the a-c-plane. The principal axes of the AMS ellipsoid of augite show a similar orientation at 77 K, but the susceptibility tensor is rotated at room temperature; k_2 is rotated up to 40° away from b.

Crystal symmetry does not allow this rotation, which occurs only in those samples with significant ferromagnetic contributions. Therefore we suggest that the rotation represents an artefact related to the ferromagnetic inclusions, i.e. that the magnetic field is disturbed locally by their strong magnetization. The principal directions determined in this study agree with the orientation of the k_2-axis proposed by Parry [1971] and Lagroix and Borradaile [2000], but not with the orientation of k_1 described by Finke [1909]. In addition, the results presented here show that not only k_2, but also k_1 and k_3 have clearly defined orientations with respect to the crystal lattice.

In aegirine, all three principal paramagnetic susceptibilities are parallel to one crystallographic axis, and thus the symmetry of the susceptibility tensor is higher than required by crystal symmetry. The difference in orientation of the principal axes compared to the diopside-augite series may be explained by the different predominant oxidation state of Fe, or by small changes in the unit cell imposed by the different sizes and charge of Ca and Na cations on the M2 site.

Interestingly, the different orientation of the susceptibility tensor with respect to crystal lattice in aegirine as opposed to the diopside-augite series is in agreement with the
orientation of the optical indicatrix in these minerals. In aegirine, the principal axes of the indicatrix are inclined 0-10° with respect to the c and a^* crystallographic axes and in diopside-augite the inclination varies between 35° and 48° [Tröger, 1982]. Even though maximum and minimum susceptibility do not always coincide with the same indicatrix axes, this confirms the crystallographic control of the magnetic anisotropy. More work would be needed, however, in order to understand why k_1 is oriented at a 45° angle from the crystallographic c-axis in diopside and augite.

The magnetic anisotropy in spodumene is a superposition of a diamagnetic and a paramagnetic component. Principal directions are consistent for samples with similar Fe concentrations, i.e. for Spod1 and Spod2 with 0.005 wt.% FeO, or for the group with 0.2 – 0.6 wt.% FeO consisting of Spod3-4, NMB444 and fXl and fXl2, but differ between the groups. Because Spod1 and Spod2 have the lowest Fe concentration, their anisotropy ellipsoids may represent the diamagnetic fraction of the susceptibility.

For orthopyroxene, the principal directions of any second-order tensor property are each parallel to one of the crystallographic axes, as required by the orthorhombic symmetry. Enstatite has its maximum susceptibility aligned with the crystallographic c-axis, and k_2 and k_3 are parallel to the a- and b-axes, respectively. One sample deviates from this general behavior, which is due to a small misorientation of the crystal. Lagroix and Borradaile [2000] have already proposed the alignment of k_1 parallel to c. However, they did not find any relation between k_2 and k_3 with the a- or b-axes, violating crystal symmetry constraints. They explained this by the effects of ferromagnetic inclusions or misorientation. Isolating the paramagnetic anisotropy demonstrates that k_2 is parallel to the crystallographic b-axis in enstatite. These results seemingly contradict findings by Wiedenmann et al. [1986], who measured Fe-rich orthopyroxenes and found that the maximum susceptibility is parallel to b.

24
Their samples differ considerably from this collection, however, because they have a significantly larger Fe concentration and both M1 and M2 sites are occupied predominantly by Fe. Crystals used in this study have small Fe concentrations and the Fe is located mainly in M2 sites.

4.4 Ferromagnetic inclusions

Many pyroxenes, especially augite, contain ferromagnetic inclusions, which, even when their abundances are small, clearly dominate the magnetic susceptibility and its anisotropy in low fields. There are two principal types of occurrence of magnetite in augite, (1) accidental magnetite inclusions (incorporated in augite during crystal growth), and (2) magnetite forming as exsolution products upon cooling of augite crystals, where the magnetite (111) plane often lies parallel to (100) of the augite, and (-110) parallel to (010). If there are needles of magnetite, these lie in the (010) plane and are elongated parallel or perpendicular to [001] [Bown and Gay, 1959; Deer et al., 1978; Feinberg et al., 2004; Feinberg et al., 2006]. The consistency of ferromagnetic principal susceptibility directions exhibited by the samples thus suggests that magnetite inclusion of type (2) predominates.

If clinopyroxene is preferentially oriented in a rock, and type (2) magnetite inclusions within this pyroxene carry a remanent magnetization, the recorded paleomagnetic direction could be deflected away from the direction of the magnetizing field. Furthermore, paleointensity studies made on single pyroxene crystals may yield inconsistent results when an isotropic susceptibility is assumed. Thus, paleomagnetic studies in rocks with a strong mineral fabric need to consider this aspect when interpreting paleomagnetic data.

5 Conclusions

The paramagnetic anisotropy in clinopyroxenes and orthopyroxenes is clearly related to the crystal lattice of each mineral group and to the concentration, dominant site distribution...
and oxidation state of Fe in each mineral. In clinopyroxene, the Fe atoms are located mainly in M1 sites and the directions of the principal susceptibilities are \(k_2 \parallel b \) and \(k_1, k_3 \) in the \(a-c \)-plane in the diopside-augite series and \(k_1 \parallel c, k_2 \parallel b \) and \(k_3 \parallel a^* \) in aegirine. There is a general trend of increasing AMS degree with increasing Fe concentration. The AMS degree is, however, affected by the Fe\(^{2+}\)/Fe\(^{3+}\) ratio, which results in a low AMS degree for aegirine, due to its large Fe\(^{3+}\) concentration. In enstatite, the maximum susceptibility is parallel to the crystallographic \(c \)-axis, and the intermediate and minimum susceptibilities are aligned with \(a \)- and \(b \)-axes, respectively. The AMS degree increases nearly linearly with Fe concentration. These results can be used together with orientation distribution functions of the respective minerals in order to model paramagnetic anisotropy in a pyroxene-bearing rock. Further, they will help interpreting AMS, e.g. in ultramafic and mafic rocks in terms of crystallographic preferred orientation of the pyroxenes.

This study demonstrates that ferromagnetic inclusions are present mainly in augite, and that preferred orientation of these inclusions causes a strong ferromagnetic anisotropy. This may dominate the low-field anisotropy and mask the anisotropy originating from the paramagnetic pyroxene. Therefore, if AMS is used as a proxy for pyroxene texture, it is necessary to isolate the paramagnetic contribution to the total magnetic anisotropy. The confinement of magnetite within the pyroxene lattice also should be considered in paleomagnetic studies employing rock samples with oriented pyroxene crystals.

Acknowledgments

A. Puschnig (Natural History Museum Basel), A. Stucki (Siber+Siber Aathal), P. Brack and S. Bosshard (ETH Zurich) kindly provided samples for this study. We are grateful to D. Logvinovich (Laboratory of Crystallography, ETH Zurich) for an introduction to Laue orientation and assistance during measurements. This project was funded by the Swiss National Science Foundation, project 200020_143438.
References

Feinberg, J. M., R. J. Harrison, T. Kasama, R. E. Dunin-Borkowski, G. R. Scott, and P. R. Renne (2006), Effects of internal mineral structures on the magnetic remanence of...

